
 1

Building Shared Libraries with VB6
Jim White

mathimagics@yahoo.co.uk
Canberra, Australia

July 2006

© 2006 Jim White

Abstract
VB6 programs at runtime make significant use of COM interfaces, even if the source
code does not use COM objects explicitly. Some critical runtime support mechanisms,
including error handling, are COM-based (eg. the Err object). VB6 applications
(EXE’s) automatically initialise their COM environment when executed, but VB6 DLL’s
only initialise COM when the client application uses the DLL via a COM interface, not
as an API (a shared library).

If a client application calls a VB6 DLL function directly, the DLL’s runtime state has no
COM capability, and so the DLL will abort if it makes any sort of COM object
reference. This has fatal consequences for the entire client process.

We present a method for building a VB6 DLL that can initialise its COM environment
automatically. This allows VB6 DLL’s to be deployed as shared libraries, so they can be
serve as API’s for clients written in other languages.

We begin by showing how a client can manually initialise a VB6 library, via the DLL’s
DllGetClassObject function. Then we show how this method can be automated by
implementing it in the DLL’s own entrypoint function.

Finally, we look at the issue of VB6 Form display, and show that a VB6 library can
operate a non-modal GUI, even with a non-VB client, with some careful programming.

1. Introduction

It is a well-known fact that VB6 can create DLL’s – it does just that when compiling and linking an
ActiveX DLL project. These DLL’s, however, are constructed with a specific purpose in mind – they
allow a VB6 program to be a COM object provider. In OO terminology, an ActiveX DLL is intended to
allow VB6 to produce public class libraries.

Public class libraries are managed by the Operating System’s OLE/COM layer. When a client application
requests an instance of apublic class (the VB6 equivalent of a CreateObject call), the OS locates and
loads the appropriate server DLL (the object provider), and calls the DLL’s COM interface functions to
handle the client request.

That is why all VB6 DLL’s export the same set of functions (DllGetClassObject, etc). These provide a
common interface for DLL’s that support the OLE/COM model. This interface is documented in the
MSDN library.

 2

2. ActiveX DLL Structure

If you examine the export table of an ActiveX DLL, you will always see the same list of exported
functions:

• DllGetClassObject

• DllCanUnloadNow

• DllRegisterServer (*)

• DllUnregisterServer (*)

These functions form the standard interface defined for DLLs that support the OLE Component Object
Model (COM). The last two, those indicated with (*), are in fact not used at all at runtime by clients,
they are only used when registering or de-registering the DLL (the process by which a class library is
made public).

DllCanUnloadNow is used to notify the DLL when a client releases (destroys) its last reference to any
object created by it.

DllGetClassObject is the principal interface routine – this is the function that OLE calls when the client
executes a CreateObject request.

3. VB6 and Private Class Libraries

VB6 is very much based on COM technology. Even if you don’t use classes in your code, every program
you write in VB6 makes extensive use of the COM object model. Forms and controls are COM objects,
as are private classes, and various global objects such as Err and App.

These objects are not public, however. Every VB6 module (EXE or DLL) has a built-in private class
library, which provides the COM interface for these VB-specific objects.

This explains why VB6’s built-in controls can’t be created by a non-VB application – there is no public
class library that provides them.

4. ActiveX DLL’s as Function Libraries

Building a VB6 DLL that can be used as function library is quite simple. This is simply a matter of
getting selected functions to be included in the DLL’s export table. Exporting functions from ACtiveX
DLL’s is not a supported feature, but is easily achieved with a VB6 link control tool.

VB6 has its own compiler and linker utilities, which are invoked when a project is compiled to native
code. The VB6 compile-and-link mechanism was first described by Lee Thé in 1997 ([2]). Methods of
customising this process followed soon after, notably John Chamberlain’s article “Taking Control of the
Compile Process” in 1999 [1]. A simpler method based on command-line interception was described by
P.J. Morris in [3].

 3

For our purpose, we have no need to modify the compilation step, we only need to customise the final
linkage. This can be done with a simple VB6 Link Control tool – the source code for a suitable tool is
provided in the appendices to this document.

The link customisations required to build the VB6 library examples described below are elementary - we
need only a facility to nominate functions for exporting, and the ability to modify the DLL’s entrypoint
address.

If you are unfamiliar with VB6 compile/link customisation methods, the link tool we provide here
presents the easiest way to implement the examples. Morris’s article [3] is well worth reading in order
to understand the principles involved.

5. Building a New VB6 Function Library

 The general method for creating any new VB6 library DLL is as follows:

• Use an ActiveX DLL project template

• Create a dummy class (there is no need to write any code for it), and set its Instancing
property to 5 (Multiuse). This ensures the project will produce a DLL when the MAKE option
is invoked.

• Compile the empty “skeleton” project to produce an initial, dummy version of the DLL

• Now go to the Project Properties menu, access the “Compatibility” tab, and set the project to
“Binary Compatibility”, nominating the DLL you just made. This prevents VB6 from
producing new (and useless) GUID’s every time that you recompile the DLL

• Put the required library functions (those that are to be exported) in one or more BAS modules

• Create a link control command file to specify the exported functions

Appendix I of this document contains the complete source code and instructions for a simple but effective
link-control tool called MVBLC (Mathimagics VB Link Controller). With this tool you can control the
DLL linking (exporting functions, etc) by creating simple link command files (VBC files). When you
MAKE any project in VB6, it will be compiled and linked normally unless it is a DLL and there is a VBC
file present.

If you already have a similar tool, you should be able to use that – the only link customisations that we
need to perform are the specification of exported functions and the option to change the DLL’s entrypoint
address. If you wish to use MVBLC, then now is a good time to install it (see Appendix I).

6. Initialisation of VB6 Function Libraries

Building a VB6 library DLL is simple, but getting it to provide the desired functionality is much less
straight-forward. Even without introducing complexities such as Forms, what can appear to be
“elementary” VB6 code is often found to crash when the DLL is called by a client application.

As we discussed earlier, the VB6 runtime environment is very much dependent on COM, even a project
with no Forms, just “pure” module functions, can be quite dependent on COM mechanisms to function
correctly.

 4

All VB6 executables (whether EXE’s or DLL’s) perform two types of initialisation:

• Generic - initialisation of the VB6 runtime environment, including initialisation of the runtime
heap structures and the exception handling mechanism

• COM - the private class library embedded in all VB6 executables (this includes not just Forms,
if present, but also other “global” COM objects such as Err)

Without the COM initialisation, a VB6 DLL cannot execute any COM-related statement. It cannot access
the Err object, for example, nor can it load a Form or create an instance of a private Class. Another
mechanism that is dependent on COM initialisation is the way VB6 performs CALL’s from an application
to external functions defined with the VB6 Declare statement – the way VB6 does this at runtime also
involves the Err object. So we can’t even make API calls (at least, not this way) without COM
initialisation.

7. ActiveX DLL Initialisation

How are ActiveX DLL’s normally initialised? Since the ActiveX DLL project was designed as way of
building COM object providers, all COM environment initialisation for a VB6 DLL is embedded in the
DLL’s COM interface routines. This code gets executed automatically when a client application makes
the first CreateObject request on a class for which this DLL is the registered server.

These requests are handled by the OLE32 API, in particular the CoGetClassObject function. Once the
DLL has been identified via the registry, it is loaded via CoLoadLibary (the OLE equivalent of
LoadLibary).

ActiveX DLL’s are like any other DLL in one respect - loading the DLL automatically executes the
DLL’s entrypoint function, usually called DllMain in non-VB DLL’s, but in a VB6 DLL its name is
__vbaS.

Note that the name DllMain is typically used to refer to a DLL’s entrypoint - this entrypoint specifies the
address of a function the the OS will call when the DLL is first loaded into a client process. This DLL
entrypoint function is not called by name, but by its address – this address is placed in the DLL’s header
by the linker when the DLL is built.

Unfortunately, the standard entrypoint function, __vbaS, that gets generated for an ActiveX DLL does
not include COM initialisation. It simply performs the generic initialisation, such as initialisation of the
heap structures (wich are used for dynamic array allocations), and initialisation of the runtime exception
handling mechanism.

COM initialisation is only performed when the first CreateObject request made by from the client
application is serviced. The OLE subsystem, after loading the DLL if necessary, then makes a
conventional API call (ie. by name) to the DLL’s DllGetClassObject function.

If your library DLL is not intended for general distribution, and you don’t mind modifying your client
applications individually to make them “compatible” with your library DLL, then a simple way to solve
the COM initialisation problem is this:

• register the DLL in the normal COM way

• have your client applications create an instance of your DLL’s public class

In other words, the COM initialisation problem can be avoided altogether by making appropriate coding
changes to client applications (although this does require the client to be written in a language that
supports creation of COM objects).

We would prefer, of course, to solve the problem in a more generic way – one that does not require any
specific coding changes in the client (ie. the client should be able to call the VB6 library in just the same
way that it calls any other API function). Accordingly, we need to find a non-COM way of initialising

 5

the DLL, and one that can be performed automatically (ie. we want this initialisation to be transparent to
the client application).

8. COM Initialisation via DllGetClassObject

The key to a general solution to this problem is provided by the standard interface function that all
ActiveX DLL’s provide, the DllGetClassObject function. As we saw earlier, DllGetClassObject is a
standard interface, and is described in the MSDN library as follows:

Figure 1 – MSDN entry for COM interface routine DllGetClassObject

Note that a ClsId is just a GUID that uniquely identifies a class from which an object instance is being
requested. The DLL instantiates the object, and returns a pointer that identifies both the interface for this
class (where the code for the methods can be found) and the data corresponding to the this specific
instance of the class.

When an ActiveX DLL is first referenced by a client, it is in respose to the client’s first request to create
an object provided by the DLL. As we have seen, the DLL when loaded initially into the client process
will only perform generic (non-COM) initialisation.

STDAPI DllGetClassObject(

 REFCLSID clsid,// CLSID for the class object

 REFIID riid, // RIID for the interface that communicates
 // with the class object

 LPVOID *ppv // Address of output variable that receives the

// interface pointer requested in riid
);

Parameters

 rclsid [in] CLSID that will associate the correct data and code.

 riid [in] Reference to the identifier of the interface that

the caller is to use to communicate with the class
object. Usually, this is IID_IClassFactory (the
interface identifier for IClassFactory).

 ppv [out] Address of pointer variable that receives the

interface pointer requested in riid. Upon successful
return, *ppv contains the requested interface pointer.
If an error occurs, the interface pointer is NULL.

Return Values
This function supports the standard return values E_INVALIDARG,
E_OUTOFMEMORY and E_UNEXPECTED, as well as the following:

 S_OK (0) The object was retrieved successfully.

 CLASS_E_CLASSNOTAVAILABLE (0x80040111)
The DLL does not support this class.

 6

This implies that the COM initialisation for the DLL must be automatically invoked when the client
makes the first CreateObject request. This suggests that one way to COM-initialise a VB6 DLL for
library use might be simply to fabricate a call to its DllGetClassObject function.

9. COM Initialisation via DllGetClassObject

Note that there are just two input parameters that need to be supplied to DllGetClassObject, the clsid
(the GUID for the target class), and the riid (the GUID for the COM object-creation interface known as
IClassFactory). The correct riid parameter is system constant:

IID_IClassFactory = {00000001-0000-0000-C000-000000000046}

We could easily find the correct GUID for clsid, too, if we wished – we could register our DLL and then
look at its registry settings. In reality, we don’t actually need a GUID, nor do we have to register the
DLL. If we just pass in a null pointer for clsid then DllGetClassObject will return an error code, but it
still has to initialise COM, because it can’t validate any of the parameters without first initialisating the
COM environment.

In short, we can get a DLL to perform its COM initialisation by calling its DllGetClassObject function,
passing it an arbitrary (or null) clsid value and the constant IID_IClassFactory.

Making this DllGetClassObject call is very easily in the client application, so we will begin with an
example in which the client initialises the DLL, then we will investigate automatic DLL self-initialisation.

10. Code Sample 1 - Client-initiated DLL initialisation

 This example also provides a simple way of testing the effectiveness of the initialisation method. We
show below some simple code that can be pasted into either a VB6 or a PowerBasic client application. It
provides a subroutine InitVBdll(), which performs the required DllGetClassObject call in a particular
target DLL (here the target is assumed to be CodeSample1.dll).

Figure 2 – Subroutine InitVBdll - making a “dummy” call to DllGetClassObject

 Type IID
 data1 As Long
 data2 As Integer
 data3 As Integer
 data4(7) As Byte
 End Type

 Declare Function DllGetClassObject Lib "CodeSample1.dll" _
 Alias "DllGetClassObject" _
 (REFCLSID As Long, REFIID As IID, PPV As Long) As Long

 Sub InitVBdll() ' Invoke "COM initialiser" in a VB6 dll
 Dim pIID As IID
 Dim pDummy As Long
 ' Set pIID = IID of IClassFactory
 ' = {00000001-0000-0000-C000-000000000046}
 pIID.Data1 = 1
 pIID.Data4(0) = &HC0
 pIID.Data4(7) = &H46
 Call DllGetClassObject(pDummy, pIID, pDummy)
 End Sub

 7

Next we create a simple VB6 library function for this test – our function is called IsPrime. It accepts a
single Long parameter, and returns a Long result. The return value is 1 if the number passed in is a
prime, otherwise the return value is 0. Note that the function does not check for a negative argument, but
it does have an error handler which should be invoked if an attempt is made to evaluate Sqr() with a
negative parameter.

All we need for this example is a standard VB6 ActiveX DLL project, as described above, with a dummy
public class, and a module containing our test function. This code is shown below in Figure 3.

 Figure 3 – VB6 DLL code for CodeSample1 Project

Before compiling the DLL, we need to create the VBC link control file, CodeSample1.vbc. This should
contain the following commands:

Export Module1 IsPrime
Status

This assumes we have called the DLL’s code module “Module1”. The STATUS command is optional,
but is recommended because it will always tell you if a custom link was done. That way you can be sure
the linker is operating correctly. If the link control system is properly installed, we simply “make” the
DLL in the normal way, and if the link is successful, and we have included the STATUS command, the
following message should be displayed:

 Figure 4 – Status report from the Link Tool

Option Explicit

Public Function IsPrime(ByVal N As Long) As Long
 Dim i As Long, k As Long
 On Error GoTo BadParameter
 k = Int(Sqr(N))
 For i = 3 To k Step 2
 If (N Mod i) = 0 Then Exit Function
 Next
 IsPrime = 1
 Exit Function

BadParameter:
 MsgBox "Error in IsPrime(): " & Err.Description & Chr$(10) & _
 " Parameter: &H" & Hex$(N), vbExclamation, _
 "CodeSample1.dll"
 End Function

 8

The export list includes the names that VB6 auto-exports, and also identifies the address of the DLL’s
entrypoint function (a feature we will make use of later). The key entry here is the confirmation that
IsPrime has been exported.

Now we can write a simple client program to test this DLL. This could be in any language (including
VB6 of course), but in this document we provide test client programs in “PowerBasic” form.

The code for Client1.bas is shown below - you just need to paste in the InitVBdll code from Figure 2
above (the syntax is valid for PowerBasic, so no changes are needed).

 Figure 5 – PowerBasic code for Client1

The test client program makes a sequence of 3 calls to IsPrime. If you answer “Yes” to the initial
prompt, the DLL should perform correctly and the the following sequence of messages should be seen:

Figure 6 – Messages displayed by Client1 when DLL is correctly initialised

Declare Function IsPrime Lib "CodeSample1.dll" _
 Alias "IsPrime" (ByVal N As Long) As Long

 Sub TestPrime(ByVal N As Long)
 If IsPrime(N) Then
 MsgBox Str$(N) & " is prime", 64, "Client1"
 Else
 MsgBox Str$(N) & " is not prime", 16, "Client1"
 End If
 End Sub

 Function PBMain() As Long

 If MsgBox("Call DLL COM initialiser?", 36, _
 "Code Sample 1 - Client App") = 6 Then _
 Call InitVBdll

 testPrime 41
 testPrime 42
 testPrime -43 ' will trigger DLL error
 End Function

 9

The 3rd message is from the DLL itself, and confirms that the DLL’s VB6 runtime error handling
mechanism is working.

Responding with “No” at the prompt gives a different result:

Figure 7 – Client Death Notice (WinXP-style)

Having established that the initialisation method is behaving correctly - we will next consider how we can
move the InitVBdll routine out of the client and into the DLL itself.

11. Automating the DLL initialisation

Every DLL has an entrypoint function. This is usually referred to as DllMain, although its name can in
fact be anything (at runtime it is called by address, not by name). Entrypoint functions are a standard
Windows OS feature – they are called by the OS when the DLL is loaded, unloaded, also whenever the
current process begins or ends a thread. One of the parameters for DllMain is a numeric code that tells
the function which particular event has occurred. (For the formal syntax, see the DllMain entry in the
MSDN library).

This is the general mechanism by which DLL’s can perform automatic startup and/or shutdown tasks. The
standard entrypoint function provided by VB6 when compiling an ActiveX DLL is called __vbaS. This is
the default DllMain. supplied by VB6 when building ActiveX DLL’s. It is actually quite small, serving as
a gate to a common function in the VB6 runtime library (MSVBVM60.DLL).

Ideally, we would like the VB6 DLL’s we build to automatically invoke our InitVBdll routine just once,
when the entrypoint function is called for the first time. The easiest way to do this is to provide a custom
entrypoint function – the entrypoint address is a command-line parameter at link time so a link control tool
can easily change the VB6-generated default setting. We can, in fact, provide our own DllMain from
within the VB6 DLL.

 10

A replacement entrypoint function has to behave like a window-message hook. Every call to a DLL’s
entrypoint function is effectively a message indicating to the DLL that some process-related event has
occurred. We still want each message to be processed, so our function should pass all incoming calls on
to the real __vbaS function, ensuring that we do not interfere with the DLL’s normal runtime interface.
The only action we wish to take ourselves is to call the the COM initialiser when the entrypoint is called
for the first time.

The VB6 code for the DLL to perform automatic initialisation is shown below:

Figure 8 – Automatic DLL Initialisation via an Entrypoint Function

This code is very simple, but there remains one problem to solve – how to make the calls to the DLL’s
own DllGetClassObject and __vbaS functions. We can’t define them with Declare statements,
because we can’t use the normal VB6 API calling method until initialisation is complete.

An alternative method of making API calls functions without using a Declare statement is to declare the
functions in a Type Library. When a VB6 program calls an API function via a Type Library, the call is
made as a normal Win32 API call - via the DLL’s Import Table – this calling method does not touch the
Err object, so it solves our problem.

So, before we can compile this new DLL code, we first need to construct a small Type Library which
will allow the DLL to make calls to its own DllGetClassObject and __vbaS functions without prior
COM initialisation.

12. About Type Libraries

There are various forms of Type Libraries (TLB’s), and different software tools for building them. One
format uses a script called ODL (Object Definition Language). Although ODL has been superceded by
other formats (such as MIDL), it is still a reasonably easy way to generate the simple type library that we
need.

Option Explicit

Function DllMain(ByVal hInstance As Long, _
 ByVal lReason As Long, _
 ByVal lReserved As Long) As Long

 DllMain = 1 ' this function should always return 1
 Call vbaS(hInstance, lReason, lReserved)
 If lReason = 1 Then Call InitVBdll ' 1 means first call
 End Function

Sub InitVBdll() ' COM initialiser
 Dim pDummy As Long
 Dim pIID As IID ' IID_IClassFactory
 ' {00000001-0000-0000-C000-000000000046}
 pIID.Data1 = 1
 pIID.Data4(0) = &HC0
 pIID.Data4(7) = &H46
 Call DllGetClassObject(pDummy, pIID, pDummy)
 End Sub

 11

One potential disadvantage of this approach is that the target DLL name for each external function
declaration is “hardcoded” inside the Type Library, so that is the name that will appear in the DLL’s
import table. Since we want each different DLL we build to be able to call itself, this would require us to
generate a different TLB for each different DLL.

Although creating a TLB is quite simple, making one for each different DLL could easily become
tiresome. For each new DLL, we need to make a fresh copy of our ODL script, specifying the target DLL
name, and we also have to specify a different GUID for each new Type Library.
Most TLB users do not have this problem - it’s quite unusual for a DLL to want to make external calls to
itself! The typical Type Library used for API function declarations can be used in multiple projects, since
the target DLL names are usually constant (eg kernel32, user32, etc).

Fortunately, there is a reasonably elegant way around this problem - we can make a generic “multi-use”
TLB that we only need to build once. The idea is simple – we hardcode some generic dummy dll name in
our TLB, eg XXXXXX.dll. We can then use this TLB with any VB6 DLL project. When we build a
DLL, it will contain an Import Table in which the entries DllGetClassObject and vbaS are marked as
belonging to XXXXXX.dll. The Import Table is actually two sub-tables, one which lists the different DLL
names, and another which lists each imported function name along with an index into the DLL name table.

So the import DLL names are only stored once, and we can “fix” a DLL after linking by locating its table
entry in the DLL file and changing it to the desired value. This is a simple modification that can be
performed automatically by the link control tool. The only restriction is that we need to make sure that the
TLB’s dummy dll name is long enough to allow us to safely overlay it with a different value (we can’t
change it to name that is longer, otherwise we will corrupt the DLL).

13. Building the Type Library for DLL Self-initialisation

Here is the ODL script we need to create the TLB that will allow us to automatically initialise our VB6
DLL’s. The dllname entry specifies the “dummy” dll name that we will use (shown in blue). Simply
create a text file called vbLibraryHelper.odl (the location is arbitrary) and insert the following text:

Figure 9 – ODL Script for the vbLibraryHelper Type Library

[uuid(AABBCCDD-0000-0000-0000-000000000000),
 helpstring("MathImagics VB6 DLL Self-initialiser"),
 lcid(0x0), version(1.0)]

 library vbLibraryHelper {
 typedef struct {
 long Data1;
 short Data2;
 short Data3;
 unsigned char Data4[8];} IID;

 [dllname("vbLibraryHelper_mathimagics")]
 module ThisDLL {
 [entry("DllGetClassObject")] Long DllGetClassObject(
 [in] long *pClsId, [in] IID *riid, [in] long *ppv);

 [entry("__vbaS")] Long vbaS(
 [in] long hInst, [in] long lReason, [in] long lRsrvd);
 }
 }

 12

In ODL script, the entry statements correspond to VB6 Declare statements, the uuid specifies the
GUID for the Type Library (arbitrary, but it must be unique), and the “dllname” entry sets the name of
the DLL where the declared functions are located. Note that we have to use the name vbaS in our VB6
code because __vbaS is regarded as an illegal function name. This ODL associates the two names for us.

We have made the dummy dll name fairly long, so we should have no problems overlaying it safely in
most DLL’s that we are likely to build - if ever a longer setting is needed, you can easily change the
TLB, but you will also need to adjust and recompile the MVBLC tool to match the new name).

We make a TLB from an ODL file with the MVS MkTypLib tool - this should be present in your
Visual Studio directory, if it’s missing, you can get it from the MSDN website.

Open a command window in the directory containing the ODL file and execute this command:

 mktyplib /nocpp vbLibraryhelper.odl

The response should be a message like this: Successfully generated type library 'vbLibraryHelper.tlb'

This TLB file can now be included (ie: referenced) in any VB6 project via the Project References
option. Then the two function entries will be viewable via the IDE Object Browser. The MVBLC link
control tool will automatically fix any DLL that uses this TLB.

14. Code Sample 2 – A Self-Initialising VB6 Library

We now have everythig we need to move the initialisation from the client to the DLL. For CodeSample2,
we simply add the code in Figure 8 into our DLL’s main module. We need an extra command in the
VBC file to tell the linker to use our DllMain as the DLL’s entrypoint function. Assuming once again that
the functions are all located in Module1, the VBC commands needed are:

Export Module1 IsPrime
Entry Module1 DllMain
Status

The status report for a successful link should look like this:

Figure 10 – Status report for CodeSample2

 13

Notice the differences between the status report above and the earlier one (Figure 4). The export list now
includes __vbaS (this will be exported automatically by MVBLC), and also DllMain. The latter is also
marked as the new entrypoint address. The “Self-Imports” list is a verification that the DLL has been
correctly “fixed” to call itself (the TLB dummy name has been successfully replaced).

To test the new DLL, we simply strip Client1 of its DLL initialisation code to produce Client2:

Figure 11 – PowerBasic code for Client2

The resulting program should produce exactly the same results as Client1.

15. Forms and Windows

Before we look at introducing Forms display to our DLL’s, we need to have some idea of how the
Windows Messaging System works – a Form (and also many standard controls) is both a COM object
and an OS object, that is, a window. The OS generally doesn’t pass window event messages directly to
the target windows. Most messages are placed in a queue that the OS keeps for each process.

The processes themselves have to “fetch” these messages from the queues. This means that most GUI
applications have one thing in common, a piece of code generally referred to as a message pump. When
a GUI application starts, it normally starts by creating a main window, and eventually enters “listen” mode
by running a message pump, which is just a loop that looks for new messages, and processes them when
they appear in the queue.

A VB6 EXE has a built-in message pump, of course. All the windows-level interfacing is performed
behind the scenes, by the VB6 runtime support library. An ActiveX DLL, however, does NOT have a
message pump. It is generally assumed that the ActiveX DLL will be used by a client process that has at
least one main window of its own, and is running its own message pump. Furthermore, because VB6
“manages” top-level windows (Forms) as both windows and COM objects, it will not allow a COM
server DLL to show non-modal Form’s when the client application is not itself a VB6 program.

 Declare Function IsPrime Lib "CodeSample2.dll" _
 Alias "IsPrime" (ByVal N As Long) As Long
 Sub TestPrime(ByVal N As Long)
 If IsPrime(N) Then
 MsgBox Str$(N) & " is prime", 64, "Client2"
 Else
 MsgBox Str$(N) & " is not prime", 16, "Client2"
 End If
 End Sub
 Function PBMain() As Long
 testPrime 41
 testPrime 42
 testPrime -43 ' will trigger DLL error
 End Function

 14

This is not so much because it can’t be done, but it does present some major challenges, such as how to
reconcile the clients view of the Form as simply another window with the DLL’s view of the Form as a
COM object.

This means that an ActiveX DLL can’t create windows (apart from MODAL windows, which don’t
require a pump service) unless the client application is running a pump. If the client application has a GUI,
of course, then we don’t have a problem.

If the client application is NOT running a pump (eg. it might be a console application, or a C program that
doesn’t create any windows) then we will need to provide one – this is not an easy thing to do with a DLL,
which is expected to return control to the caller, not to sit instead in a message pump loop!

A DLL can theoretically start a separate thread, and that thread can run a message pump. Meanwhile the
DLL would be able to return control to the client. We will look at this particular situation later on, but for
now we will assume that the client application, regardless of what language it is written in, has created a
main window and is running a message pump.

16. Code Sample 3 – A VB6 DLL with Forms

We will use a simple model to demonstrate Form handling. The client will create and show its main
window, and then passes all keyboard input (character by character) to a library function called vbEcho.

The vbEcho library function will echo the keystroke passed in by displaying the keyboard character in a
picture box. It will automatically load an display a form containing the picture box the first time it is
called. The form will initially be aligned with the client window.

The dll’s form will persist until the client application terminates (when the main window is closed). To
demonstrate that the form is non-modal, it will also echo keystrokes made when the form itself has the
focus. These will be displayed in red, to distinguish them from keystrokes passed by the client.

When the client terminates, any windows created by the DLL are simply destroyed. No VB6 Form events
will be signalled. We can, however, use the DLL’s DllMain function to detect client termination and to
perform an orderly shutdown. Thus we can unload forms properly, so their Form_Unload event handlers
will be called.

There are two special coding conventions we need to use in order to display non-modal forms:

• we can’t use the normal VB6 Show method, or the application will crash. Instead we
should use the Load statement to initialise the form, and then call the ShowWindow API
function to make it visible

• if the DLL does manually Unload any form, it must take care to keep at least one form
(eg. a dummy hidden form) loaded. Once any form is created, the Forms collection cannot
subsequently be allowed to become empty, otherwise the application will crash

The precise reasons for these two potentially fatal errors are unclear, but are no doubt related to the fact
that we are operating well outside the normal “safe environment” in which VB6 runtime Forms are
managed. Fortunately, both cases can easily be avoided.

To make the CodeSample3 DLL we use the same DllMain and InitVBdll code that we used in Code
Sample 2. We add two Forms to the project, BlankForm and DllForm. BlankForm is just an empty
form that we will load (but not show) in order to prevent the known problem with the Forms collection.

 15

DllForm is simply a standard form with a PictureBox control, Picture1. It should have its AutoRedraw
property set to True. The code for DllForm and for the vbEcho function is shown below:

Figures 12, 13 – CodeSample3 DllForm and the vbEcho function

Dim ClientRect As RECT
Dim FirstCall As Boolean

Private Sub Form_Load()
 FirstCall = True
 End Sub
Private Sub Form_KeyPress(KeyAscii As Integer)
 If KeyAscii < 256 Then Call EchoChar(KeyAscii, vbRed)
 End Sub
Private Sub Form_Unload(Cancel As Integer)
 MsgBox "Client application has terminated" & vbLf & vbLf _
 & "(DLL Form_Unload)", vbInformation, "CodeSample3.dll"
 End Sub

Sub EchoChar(ByVal Key As Byte, ByVal Colour As Long)
 With Picture1
 .ForeColor = Colour
 If .CurrentX > .Width - 120 Then Picture1.Print ' auto-wrap
 Picture1.Print Chr$(Key);
 End With
 End Sub

Private Sub Form_Resize()
 If WindowState = 1 Then Exit Sub
 If FirstCall Then ' align window with client
 FirstCall = False
 GetWindowRect ClientWindow, ClientRect
 With ClientRect
 Move Screen.TwipsPerPixelX * .Left, _
 Screen.TwipsPerPixelY * .Bottom, _
 Screen.TwipsPerPixelX * .Right - .Left)
 End With
 End If
 Picture1.Move 0, 0, Me.ScaleWidth, Me.ScaleHeight
 End Sub

Public myForm As dllForm
Public ClientWindow As Long

Sub vbEcho(ByVal N As Byte)
 If myForm Is Nothing Then
 ClientWindow = GetForegroundWindow
 Load BlankForm ' keeps Forms collection non-empty
 Set myForm = New dllForm
 Load myForm
 ShowWindow myForm.hwnd, 1 ' non-modal forms can't use .Show
 End If
 myForm.EchoChar N, 0
 End Sub

 16

We also add an extra line to our DllMain function to detect the client termination event:
 If lReason = 0 Then Call CloseVBdll

This case covers the event where the client application has terminated, and the system is unloading any
DLL’s it loaded. This allows to perform any necessary “shutdown” tasks. For this example we simply
want to unload the form if we have created it. We have placed a MsgBox call in the form’s Unload event,
so we can confirm that this event has been correctly triggered, even though the client application has
terminated. The CloseVBdll routine is shown here:

Figure 14 – CodeSample3 CloseVBdll function

The API declarations needed by the various code segments above is shown below. We can use the normal
Declare syntax for these, since they will be called only after COM initialisation has been completed.

Figure 15 – CodeSample3 API Declarations

The VBC file commands for this DLL are:

Export Module1 vbEcho
Entry Module1 DllMain
Status

Once again, we have assumed here that both functions are in Module1

Sub CloseVBdll()
 If myForm Is Nothing Then Exit Sub
 Unload myForm
 End Sub

Type RECT
 Left As Long
 Top As Long
 Right As Long
 Bottom As Long
 End Type

Declare Function GetWindowRect Lib "user32" _
 (ByVal hwnd As Long, lpRect As RECT) As Long
Declare Function GetForegroundWindow Lib "user32" () As Long

Declare Function ShowWindow Lib "user32" _
 (ByVal hwnd As Long, ByVal nShow As Long) As Long

Declare Function MoveWindow Lib "user32" _
 (ByVal hwnd As Long, ByVal x As Long, ByVal y As Long, _
 ByVal nWidth As Long, ByVal nHeight As Long, _
 ByVal bRepaint As Long) As Long

 17

We need a completely new client program to test the CodeSample3 DLL. Here we present a PowerBasic
version, Client3. The listing is shown in three parts. The first part has the program’s WinMain routine,
which calls OpenMainWindow to create the application’s main window, then runs a message pump loop:

Figure 16 – Client3.bas (Part 1)

The message pump loop checks for messages, dispatches them if necessary, calls local function
CheckClock , and then surrenders the remainder of the applications CPU timeslice by calling the API
function Sleep(0). CheckClock simply redraws the main window, updating the time display, if the time
has changed by 1 second or more since the last update.

#Compile Exe
#Include "Win32API.inc"

Declare Sub vbEcho Lib "CodeSample3.dll" Alias "vbEcho" _
 (ByVal C As Long)

Global hModule As Long ' appn module handle
Global MainWindow As Long ' appn's window handle
Global tLast As Long ' last clock update
Global lmsg As Asciiz * 80
'==
Function WinMain (ByVal hInstance As Dword, _
 ByVal hPrevInstance As Dword, _
 ByVal lpCmdLine As Asciiz Ptr, _
 ByVal iCmdShow As Long) As Long
 Dim Msg As tagMsg
 hModule = hInstance
 '
 ' create the client application main window
 '
 Call OpenMainWindow
 '
 ' enter the message pump loop
 '
 Do
 If PeekMessage(Msg, 0, 0, 0, 1) Then
 TranslateMessage Msg
 DispatchMessage Msg
 If Msg.Message = %WM_QUIT Then Exit Do
 End If
 Call CheckClock ' update the time display
 Sleep 0
 Loop
 End Function
'==
Sub CheckClock()
 Dim tNow As Long
 tnow = Timer
 If tNow = tLast Then Exit Sub
 tLast = tNow
 Call PaintWindow
 InvalidateRect MainWindow, ByVal 0, 0
 UpdateWindow MainWindow
 End Sub

 18

The second part of the listing shows the OpenMainWindow and PaintWindow routines:

Figure 17 – Client3.bas (Part 2)

A particular statement of interest here is:
 wce.lpfnWndProc = CodePtr(WndProc)

Sub OpenMainWindow()
 Dim wce As WndClassEx
 Dim szAppName As Asciiz * 80

 szAppName = "CodeSample3_Client"
 wce.cbSize = SizeOf(wce)
 wce.style = %CS_HREDRAW Or %CS_VREDRAW
 wce.lpfnWndProc = CodePtr(WndProc)
 wce.hInstance = hModule
 wce.hCursor = LoadCursor(%NULL, ByVal %IDC_ARROW)
 wce.lpszClassName = VarPtr(szAppName)
 wce.hIconSm = LoadIcon(hModule, ByVal %IDI_APPLICATION)
 RegisterClassEx wce

 MainWindow = CreateWindow(szAppName, _ ' window class name
 "Client3", _
 %WS_OVERLAPPEDWINDOW, _ ' window style
 %CW_USEDEFAULT, _ ' initial x position
 %CW_USEDEFAULT, _ ' initial y position
 375, 144, _ ' initial x size
 %NULL, _ ' parent window handle
 %NULL, _ ' window menu handle
 hModule, _ ' instance handle
 ByVal 0) ' creation parameters
 lmsg = "<< Keystroke Logger >>"
 ShowWindow MainWindow, 1
 End Sub

Sub PaintWindow () ' paints window background in "gradient" style
 Dim hDC As Long
 Dim rectFill As RECT
 Dim rectClient As RECT
 Dim fStep As Single
 Dim hBrush As Dword
 Dim lBand As Long
 hDC = GetDC(MainWindow)
 GetClientRect WindowFromDC(hDC), rectClient
 fStep = rectClient.nbottom / 200
 For lBand = 0 To 199
 SetRect rectFill, 0, lBand * fStep, rectClient.nright + 1, _
 (lBand + 1) * fStep
 hBrush = CreateSolidBrush(RGB(0, (255-lBand), (255 - lBand)))
 Fillrect hDC, rectFill, hBrush
 DeleteObject hBrush
 Next
 End Sub

 19

This tells the OS that all messages for this application will be handled by the client’s WndProc function.
This is where the client will detect keystrokes and call our DLL’s vbEcho function. The third and final
section of this code listing below shows the WndProc function.

Figure 18 – Client3.bas (Part 3)

When we run this program, it will send any keystrokes to the DLL. On the first call to the DLL, it creates
and displays its form, and echoes each keystroke code passed by the client.

Function WndProc (ByVal hWnd As Dword, ByVal wMsg As Dword, _
 ByVal wParam As Dword, ByVal lParam As Long) _
 As Long
 '
 ' the message handler for the client app’s main window
 '
 Dim hDC As Dword
 Dim pPaint As PAINTSTRUCT
 Dim tRect As RECT
 Dim mRect As RECT
 Dim Cname As Asciiz * 80
 Dim dOpts As Long

 Select Case wMsg
 Case %WM_CHAR
 Call vbEcho(wParam) ' pass keyboard code to the DLL
 SetForegroundWindow MainWindow ' keeps the focus

'===
 Case %WM_PAINT
 hDC = BeginPaint(hWnd, pPaint)
 dOpts = %DT_SINGLELINE Or %DT_CENTER Or %DT_VCENTER
 GetClientRect hWnd, tRect
 SetBkMode hDC, %TRANSPARENT
 SetTextColor hDC, %White
 DrawText hDC, Date$ & " - " & Time$, -1, tRect, _
 %DT_SINGLELINE Or %DT_CENTER Or %DT_VCENTER
 trect.nTop = trect.ntop + 54
 SetTextColor hDC, &HC0FFFF
 DrawText hdc, lmsg, -1, tRect, dOpts
 EndPaint hWnd, pPaint
 Function = 1

 Case %WM_ERASEBKGND
 Call PaintWindow
 Function = 1

 Case %WM_DESTROY
 PostQuitMessage 0
 Function = 0

 Case Else ' pass it to the OS default message handlers
 Function = DefWindowProc(hWnd, wMsg, wParam, lParam)
 End Select
 End Function

 20

Here we present some snapshots of our test client in action:

Figure 19 – Client3 snapshot #1

For simplicity in this example, we have set the DLL Form’s ControlBox property to False. If you do
enable the control box, you need to consider how to manage events such as closing the form. If you wish
to keep the form loaded, for example, the QueryUnload event handler might be used to simply hide the
form. In any case, it’s important to consider carefully the desired “life cycle” of any forms you show from
a DLL (and always keep a “dummy” hidden form object, as discussed at the beginning of this section).

Our DLL is displaying its form non-modally. So we can click on that form, thus giving it the keyboard
focus. Now our keystrokes are echoed from the DLL’s event handlers, not from client calls:

Figure 20 – Client3 snapshot #2

 21

17. Miscellaneous Issues for Mixed-Language Interfaces

VB6 and some languages like “C” store strings and some arrays differently, so VB6 library function
parameters need careful attention.

Strings

VB6 can perform automatic conversions of string parameters between VB6 and “C” strings (which are
used in most system API functions) , but this is only available for a VB6 caller calling a “C” function.
The inverse situation needs special handling.

For example, say we added a function to the library of CodeSample4 called vbEchoStr, which can be
passed a “C” string rather than a single character code. A “C” client would declare the parameter as
char * param[], while a PowerBasic client would declare it as an ASCIIZ Ptr.

In the VB6 library itself, we declare this parameter as Byval Long. The DLL can then make a VB6-
compatible copy of the input string - the MVBLC link tool source code includes a function called
CSTRtoVBSTR that does this.

To returning a “C” string as a function value, we append a null to the string and convert it to an ASCII
byte array with the builtin StrConv function. We then return the address of the first byte. The byte array
should be a global data item, otherwise the address returned won’t be valid. Here is an example of a VB6
function that returns a Timestamp in “C” string format:

Figure 21 – A Function returning a “C” String

Arrays

The important thing here is to appreciate the difference between a dynamic array and a fixed array. VB6’s
dynamic arrays are referenced indirectly by a descriptor (a SAFEARRAY structure). Fixed arrays are
referenced directly by their starting address.

The easiest way to handle array parameters is to require two parameters, one giving the client’s array
starting address, and the other its length. The library function can then use CopyMemory to access the
array elements individually, or perhaps it will be more convenient to copy the entire client array into a
dynamic array.

Error Handling

We conclude with a reminder that error handling is crucial to VB6 library management. If we are called
by a non-VB client, the VB6 DLL must handle all errors itself. If VB6 signals any error that is not
completely handled by the DLL, the client process will crash.

Public tsBuffer() As Byte ' global for C string storage

Function vbTimeStamp() As Long
 Dim ts As String
 ts = Format(Now(), "HH:MM:SS DD MMM YY") & Chr$(0)
 tsBuffer = StrConv(ts, vbFromUnicode)
 vbTimeStamp = VarPtr(tsBuffer(0))
 End Function

 22

References

[1] Chamberlain, John. “Take Control of the Compile Process”, Visual Basic Programmers’
 Journal, November, 1999. Article available from archives at www.fawcette.com. See
 John Chamberlain’s website for latest article source code and other useful material,
 johnchamberlain.com

[2] Thé, Lee. “Inside VB”, Visual Basic Programmers’ Journal, September 1997. Article
 available from archives at www.fawcette.com

[3] Morris, Peter J. “Understanding the Visual Basic Compiler (and why it matters)”.

 The Mandelbrot Set (International) Limited, 2000. Article available as PDF .

 23

Appendix I: MVBLC Link Control Tool

We list below the complete source code for the Mathimagics Visual Basic Link Control tool. This is a
simple, stand-alone VB6 application program that produces an EXE that can be substituted for the VB6
standard linker (NB: make sure that the MVBLC project Startup Object is set to Sub Main)

The listing is provided in four separate sections. There are 3 BAS modules (which you can combine into a
single one if you wish), and a FRM module for the status display. Before installing this tool, it is essential
to make a copy of the standard linker. Go to the VB98 directory in your Visual Studio area, and make a
copy of the file LINK.exe – call the copy VBLINK.exe.

Establish a directory in which you will store the MVBLC project (make it a standard EXE project type),
and prepare the source code by pasting from the listings below. Compile the project as LINK.exe in the
MVBLC folder, not directly to the VB98 folder, then copy the new LINK.exe to the VB98 folder.

MVBLC will only intervene in the normal linkage procedure if we are making a DLL, and there is a VBC
file (a link control command file) present in the same directory as the DLL, and with the same name as
the DLL. In all other cases MVBLC operates transparently, it just passes the VB6-specified link
command over to the real linker.

A VBC link control file is simply a text file with suffix ".vbc". For example, if you are compiling to
c:\fred\vbtest.dll, then MVBLC looks for c:\fred\vbtest.vbc

Command Syntax

There are five VBC commands: Export, Entry, AddDef, Status and Tidy. The names themselves
are not case-sensitive, but do remember that all LINK symbols ARE case s-ensitive. This means that
module names and function names must match exactly with those in the project. Also, note that a module
is identified by its Name property, not by its file name.

EXPORT <module> <function names>
Nominates 1 or more functions for export. You can use as many EXPORT commands as
you wish. Examples:
 Export Module1 Function1 Function2
 Export Module2 TestFunction

AddDEF <alias name> = <function name>

Allows exported functions to be given an alias. Can help solve linking problems for clients
that can only call with decorated names (eg. the “C” clients in Appendix II).

ENTRY <module name> <function name>

 Nominates a function to be linked as the DLL entrypoint (DllMain) function.

TIDY (no parameters) Tells MVBLC to remove temp files (LIB, DEF, etc) after the DLL has
been linked. VB6 itself usually leaves these lying around. They are rarely of much use.

STATUS (no parameters) Tells the link tool to display the DLL’s export table after

linking. You can easily see if the new DLL is exporting the correct items.

 24

Error Handling

If you get a name wrong, the real link step might fail. MVBLC pipes the linkage output to a temporary
file. If the link does fail you will get two messages – one from the link tool, and also one from the VB6
IDE, with the error message "DLL Load Failed". You just need to correct the errors (most probably in
your VBC file) and try the Make again.

Module: vbcMain (Main routine)

 Option Explicit

Option Compare Text
'===
' mathimagics@yahoo.co.uk
' MVBLC Link Control Tool: Module "vbcMain"
'===
' Jim White, July 2006
' Canberra, Australia
'===
Const VB6FOLDER = "C:\Program Files\MicroSoft Visual Studio\VB98"

Public EXEFILE As String ' full pathname of exe/dll file being
Public EXENAME As String ' name of exe/dll being built
Dim vbCommand As String ' LINK command line passed in by VB6 IDE

Dim Options() As String ' Command line tokens
Dim ObjList() As String ' list of project OBJ's being linked
Dim EXEPATH As String ' Folder containing OBJ files
Dim xList As String ' Export request list
Dim F As Integer ' file unit
Dim ShowStatus As Boolean ' flag for STATUS command
Dim TidyFlag As Boolean ' flag for TIDY command
Dim NormalLink As Boolean ' did we modify the link in any way?
Dim eMsg As String ' link error message

Sub Main()
 NormalLink = True
 vbCommand = Command() ' make a copy of the command line

 If InStr(vbCommand, "/STATUS:") Then ' internal MVBLC command
 frmLinkInfo.ShowStatus vbCommand
 Exit Sub
 End If
 If InStr(vbCommand, "/ERROR:") Then ' internal MVBLC command
 frmLinkInfo.ShowError vbCommand
 Exit Sub
 End If

 If InStr(vbCommand, "/DLL") Then LoadVBC ' check for VBC file

 If NormalLink Then ' no customisations, pass over to std linker
 Execute "VBLINK " & vbCommand, 1
 Else
 RunCustomLink
 End If
 End Sub

 25

Module: vbcMain (support routines)

Sub RunCustomlink()
 '
 ' Run the real linker as a batch file, so we can check the results
 '
 F = FreeFile
 Open "c:\vbLink.bat" For Output As #F
 Print #F, "cd """ & VB6FOLDER & """"
 Print #F, "VBLINK " & vbCommand & " 1> c:\vbLink.log"
 Print #F, "del c:\vbLink.bat" ' make the BAT file tidy up
 Close #F
 Execute "c:\vbLink.bat", 1
 If vbLinkError Then Exit Sub
 If TidyFlag Then Call vbTidy
 If ShowStatus Then Call DisplayLinkStatus
 End Sub

Sub vbTidy()
 '
 ' Run a little batch file to tidy up after a VB6 dll build
 '
 F = FreeFile
 Open "c:\vbTidy.bat" For Output As #F
 Print #F, Left$(EXEPATH, 2) ' assert drive in case it’s different
 Print #F, "cd """ & EXEPATH & """"
 Print #F, "if exist " & EXENAME & ".exp del " & EXENAME & ".exp"
 Print #F, "if exist " & EXENAME & ".lib del " & EXENAME & ".lib"
 Print #F, "if exist " & EXENAME & ".def del " & EXENAME & ".def"
 Print #F, "del c:\vbTidy.bat" ' self-deleting bat file
 Close #F
 Execute "c:\vbTidy.bat", 0 ' this doesn't need to be modal
 End Sub

Function vbLinkError() As Boolean
 Dim logentry As String, temp As String
 Dim i As Integer, j As Integer

 If Dir$(EXEFILE) <> "" Then
 If Dir$("c:\vbLink.log") <> "" Then Kill "c:\vbLink.log"
 FixDLL
 Exit Function ' link was successful
 End If
 vbLinkError = True
 Shell VB6FOLDER & "\Link.exe /ERROR:" & EXEFILE, 1
 End Function

Sub DisplayLinkStatus()
 ' Show export table after a successful custom link
 Shell VB6FOLDER & "\Link.exe /STATUS:" & EXEFILE, 1
 End Sub

 26

Module: vbcMain (VBC command handler)

Sub LoadVBC()
 Dim xFile As String ' link control file (dllname.vbc)
 Dim xName As String ' dll export (.DEF) filename
 Dim xKey As String ' control file keyword
 Dim mName As String ' Module name
 Dim pName() As String ' proc names to export
 Dim dName As String ' temp for decorated proc name
 Dim EntryFlag As Boolean ' true if we find an ENTRY command
 Dim j As Long, k As Long

 Options = Split(vbCommand, "/")
 ' Options(0)= the LINK command + link object list
 ' 1 = the /ENTRY switch
 ' 2 = the /OUT switch
 ' 3 … other switches /BASE, /VERSION, /OPT etc
 ' Fetch EXEpath and EXEname from the /OUT switch.
 '
 For k = 1 To UBound(Options)
 If Left$(Options(k), 4) = "OUT:" Then
 EXEFILE = Mid$(Options(k), 5)
 EXEFILE = Trim$(Replace(EXEFILE, """", ""))
 Exit For
 End If
 Next
 If EXEFILE = "" Then Exit Sub ' unlikely, but

 j = InStrRev(EXEFILE, "\")
 EXEPATH = Left$(EXEFILE, j - 1)
 EXENAME = Mid$(EXEFILE, j + 1)
 EXENAME = Left$(EXENAME, Len(EXENAME) - 4)
 '
 ' check for VBC file
 '
 xFile = EXEPATH & "\" & EXENAME & ".vbc"
 If Dir$(xFile) = "" Then
 xFile = CurDir & "\" & EXENAME & ".vbc"
 If Dir$(xFile) = "" Then Exit Sub ' no VBC file, link normally
 End If

 F = FreeFile
 Open xFile For Input As #F
 Do Until EOF(F)
 Line Input #F, xKey ' comments are supported (use “;” or “'”)
 j = InStr(xKey, ";"): If j Then xKey = Left$(xKey, j - 1)
 j = InStr(xKey, "'"): If j Then xKey = Left$(xKey, j - 1)
 xKey = Trim(xKey)
 While InStr(xKey, Space(2))
 xKey = Replace(xKey, Space(2), Space(1))
 Wend
 pName = Split(xKey, " ")

 Select Case pName(0)

 Case "Status": ShowStatus = True
 Case "Tidy": TidyFlag = True

 27

Module: vbcMain (VBC command handler - ctd)

 Case "Export" ' EXPORT <module> <proclist>
 If UBound(pName) > 1 Then
 mName = pName(1) ' module name
 For j = 2 To UBound(pName)
 dName = "?" & pName(j) & "@" & mName & "@@AAGXXZ"
 xList = xList & "," & pName(j) & " = " & dName
 Next
 End If
 Case "Entry" ' ENTRY <module> <procname>
 If UBound(pName) = 2 Then
 mName = pName(1) ' module name
 dName = "?" & pName(2) & "@" & mName & "@@AAGXXZ"
 xList = xList & "," & pName(2) & " = " & dName
 For k = 1 To UBound(Options)
 If Left$(Options(k), 6) = "ENTRY:" Then
 Options(k) = "ENTRY:" & pName(2) & " "
 vbCommand = " " & Join(Options, "/")
 EntryFlag = True
 Exit For
 End If
 Next
 End If
 Case "AddDef" ' AddDEF <aliasname> = <name>
 If pName(2) = "=" Then ' we neeed the decorated <name>
 dName = pName(3) ' if available
 j = InStr(xList, "," & pName(3) & " = ")
 If j Then ' if it is in our list
 dName = Mid(xList, j + Len(pName(3)) + 4)
 k = InStr(dName, ",")
 If k Then dName = Left(dName, k - 1)
 End If
 xList = xList & "," & pName(1) & " = " & dName
 End If
 End Select
NextLine:
 Loop
 Close #F
 If xList = "" Then Exit Sub
 ' Custom link: build DEF file, add /DEF switch to the command line
 NormalLink = False
 If EntryFlag Then xList = xList & ",__vbaS" ' export __vbaS
 pName = Split(xList, ",")
 xName = EXEPATH & "\" & EXENAME & ".def"
 F = FreeFile
 Open xName For Output As #F
 Print #F, "LIBRARY "; EXENAME
 Print #F, "EXPORTS"
 For j = 1 To UBound(pName)
 Print #F, Space(3) & pName(j)
 Next
 Close #F
 vbCommand = vbCommand & " /DEF:""" & xName & """"
 End Sub

 28

Module: vbcCommand (“Execute” routine)

This module has a generic routine for executing any command line modally.

Type STARTUPINFO ' structure used with CreateProcess API
 cb As Long
 lpReserved As String
 lpDesktop As Long
 lpTitle As String
 dwX As Long
 dwY As Long
 dwXSize As Long
 dwYSize As Long
 dwXCountChars As Long
 dwYCountChars As Long
 dwFillAttribute As Long
 dwFlags As Long
 wShowWindow As Integer
 cbReserved2 As Integer
 lpReserved2 As Long
 hStdInput As Long
 hStdOutput As Long
 hStdError As Long
 End Type

Type PROCESS_INFORMATION
 hProcess As Long
 hThread As Long
 dwProcessID As Long
 dwThreadID As Long
 End Type

Declare Function WaitForSingleObject Lib "kernel32" (ByVal _
 hHandle As Long, ByVal dwMilliseconds As Long) As Long

Declare Function CreateProcessA Lib "kernel32" (ByVal _
 lpAppName As Long, ByVal lpCommandLine As String, _
 ByVal lpProcessAtts As Long, ByVal lpThreadAtts As Long, _
 ByVal bInheritHandles As Long, ByVal dwCreationFlags As Long, _
 ByVal lpEnvironment As Long, ByVal lpCurrentDirectory As Long, _
 lpStartupInfo As STARTUPINFO, lpProcessInformation As _
 PROCESS_INFORMATION) As Long

Sub Execute(WinCommand As String, ByVal Modal As Long)
 Const NORMAL_PRIORITY_CLASS = &H20&
 Dim ProcInfo As PROCESS_INFORMATION
 Dim StartInfo As STARTUPINFO
 StartInfo.cb = Len(StartInfo)
 StartInfo.dwFlags = 1

 Call CreateProcessA(0&, WinCommand, 0&, 0&, 1&, _
 NORMAL_PRIORITY_CLASS, 0&, 0&, _
 StartInfo, ProcInfo)
 If Modal Then Call WaitForSingleObject(ProcInfo.hProcess, -1)
 End Sub

 29

Module: vbcTools (Utility functions)

This module has some utility functions for inspecting the DLL’s export table and producing the status
report.

Option Explicit
Option Compare Text

Type LOADED_IMAGE
 ModuleName As Long
 hFile As Long
 MappedAddress As Long ' Base address of mapped file
 pFileHeader As Long ' Pointer to IMAGE_PE_FILE_HEADER
 pLastRvaSection As Long
 NumberOfSections As Long
 pSections As Long ' Pointer to first COFF section header
 Characteristics As Long ' Image characteristics value
 fSystemImage As Byte
 fDOSImage As Byte
 FLink As Long
 Blink As Long
 SizeOfImage As Long
 End Type

Type IMAGE_DATA_DIRECTORY
 RVA As Long
 size As Long
 End Type

Declare Function MapAndLoad Lib "Imagehlp.dll" (_
 ByVal ImageName As String, ByVal DLLPath As String, _
 LoadedImage As LOADED_IMAGE, DotDLL As Long, _
 ReadOnly As Long) As Long

Declare Function UnMapAndLoad Lib "Imagehlp.dll" (_
 LoadedImage As LOADED_IMAGE) As Long

Declare Function ImageRvaToVa Lib "Imagehlp.dll" (_
 ByVal NTHeaders As Long, ByVal Base As Long, _
 ByVal RVA As Long, ByVal LastRvaSection As Long) As Long

Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory" (_
 lpvDest As Any, lpvSource As Any, ByVal cbCopy As Long)

Declare Sub Sleep Lib "kernel32" (ByVal nMilliseconds As Long)

Declare Function lstrlenA Lib "kernel32" (ByVal lpsz As Long) As Long

 30

Module: vbcTools (ctd)

Type IMAGE_OPTIONAL_HEADER
 Magic As Integer
 MajorLinkerVersion As Byte
 MinorLinkerVersion As Byte
 SizeOfCode As Long
 SizeOfInitializedData As Long
 SizeOfUninitializedData As Long
 AddressOfEntryPoint As Long
 BaseOfCode As Long
 BaseOfData As Long
 ImageBase As Long
 SectionAlignment As Long
 FileAlignment As Long
 MajorOperatingSystemVersion As Integer
 MinorOperatingSystemVersion As Integer
 MajorImageVersion As Integer
 MinorImageVersion As Integer
 MajorSubsystemVersion As Integer
 MinorSubsystemVersion As Integer
 Win32VersionValue As Long
 SizeOfImage As Long
 SizeOfHeaders As Long
 CheckSum As Long
 Subsystem As Integer
 DllCharacteristics As Integer
 SizeOfStackReserve As Long
 SizeOfStackCommit As Long
 SizeOfHeapReserve As Long
 SizeOfHeapCommit As Long
 LoaderFlags As Long
 NumberOfRvaAndSizes As Long
 DataDirectory(0 To 15) As IMAGE_DATA_DIRECTORY
 End Type

Type IMAGE_COFF_HEADER
 Machine As Integer
 NumberOfSections As Integer
 TimeDateStamp As Long
 PointerToSymbolTable As Long
 NumberOfSymbols As Long
 SizeOfOptionalHeader As Integer
 Characteristics As Integer
 End Type

Type IMAGE_PE_FILE_HEADER
 Signature As Long
 FileHeader As IMAGE_COFF_HEADER
 OptionalHeader As IMAGE_OPTIONAL_HEADER
 End Type

 31

Module: vbcTools (ctd)

Type IMAGE_EXPORT_DIRECTORY_TABLE
 Characteristics As Long
 TimeDateStamp As Long
 MajorVersion As Integer
 MinorVersion As Integer
 Name As Long
 Base As Long
 NumberOfFunctions As Long
 NumberOfNames As Long
 pAddressOfFunctions As Long
 ExportNamePointerTableRVA As Long
 pAddressOfNameOrdinals As Long
 End Type

Public LoadImage As LOADED_IMAGE
Dim peheader As IMAGE_PE_FILE_HEADER
Dim exportdir As IMAGE_EXPORT_DIRECTORY_TABLE
Dim vaEntryPoint As Long
Dim rvaEntryPoint As Long
Dim dllBaseAddress As Long
Dim procTable As Long
Dim procAddress As Long
Dim ExportNamePointerTableVA As Long
Dim ImportNamePointerTableVA As Long
Dim rvaImportDirTable As Long
Dim rvaExportDirTable As Long
Dim vaImportDirTable As Long
Dim vaExportDirTable As Long

' The following string must match (in uppercase), the fixed
' DLL name used in the type library (vbLibraryHelper.tlb)

Const FixDLLname = "VBLIBRARYHELPER_MATHIMAGICS.DLL"

Sub LoadDLL()
 If MapAndLoad(EXEFILE, "", LoadImage, 1, 1) = 0 Then Exit Sub
 CopyMemory peheader, ByVal LoadImage.pFileHeader, 256
 rvaEntryPoint = peheader.OptionalHeader.AddressOfEntryPoint
 dllBaseAddress = peheader.OptionalHeader.ImageBase
 If rvaEntryPoint Then
 vaEntryPoint = ImageRvaToVa(LoadImage.pFileHeader, _

LoadImage.MappedAddress, rvaEntryPoint, 0&)
 End If

 rvaExportDirTable = peheader.OptionalHeader.DataDirectory(0).RVA
 If rvaExportDirTable Then
 vaExportDirTable = ImageRvaToVa(LoadImage.pFileHeader, _

LoadImage.MappedAddress, rvaExportDirTable, 0&)
 End If

 rvaImportDirTable = peheader.OptionalHeader.DataDirectory(1).RVA
 If rvaImportDirTable Then
 vaImportDirTable = ImageRvaToVa(LoadImage.pFileHeader, _

LoadImage.MappedAddress, rvaImportDirTable, 0&)
 End If

End Sub

 32

Module: vbcTools (ctd)

Sub FixDLL()
 '
 ' If the TLB is used, this DLL needs self-referencing. If there
 ' is an export table entry matches the TLB fixed name, change
 ' it to be the name of this DLL.
 '
 Dim buf() As Byte, oldkey() As Byte, keylen As Integer
 Dim newkey() As Byte
 Dim i&, j&, k&, b&, F%, fsize&

 LoadDLL ' load the DLL image (this will get
 UnMapAndLoad LoadImage ' the offset of its Import Table)

 keylen = Len(FixDLLname)
 oldkey = StrConv(FixDLLname & Chr$(0), vbFromUnicode)
 newkey = StrConv(UCase(EXENAME & ".dll") & Chr$(0), vbFromUnicode)
 F = FreeFile
 Open EXEFILE For Binary As #F
 fsize = LOF(F)
 ReDim buf(fsize - 1)
 Get #F, , buf

 Dim pImportTable As Long
 Dim LookupTableRVA As Long
 Dim DLLNameRVA As Long
 Dim DLLname As String

 pImportTable = rvaImportDirTable ' set by LoadDLL
 Do
 CopyMemory LookupTableRVA, buf(pImportTable), 4
 CopyMemory DLLNameRVA, buf(pImportTable + 12), 4
 If LookupTableRVA = 0 And DLLNameRVA = 0 Then Exit Do
 DLLname = CSTRtoVBSTR(VarPtr(buf(DLLNameRVA)))
 If DLLname = FixDLLname Then
 Seek F, DLLNameRVA + 1
 Put F, , newkey ' Fix the DLL Import Table entry
 Exit Do
 End If
 pImportTable = pImportTable + 20
 Loop
 Close #F
 End Sub

Function CSTRtoVBSTR(ByVal lpsz As Long) As String
 Dim i As Long, cChars As Long ' C-to-VB string converter
 cChars = lstrlenA(lpsz)
 CSTRtoVBSTR = String$(cChars, 0)
 CopyMemory ByVal StrPtr(CSTRtoVBSTR), ByVal lpsz, cChars
 CSTRtoVBSTR = StrConv(CSTRtoVBSTR, vbUnicode)
 i = InStr(CSTRtoVBSTR, Chr$(0))
 If i > 0 Then CSTRtoVBSTR = Left$(CSTRtoVBSTR, i - 1)
 End Function

 33

Module: vbcTools (ctd)

 Function GetExports() As String
 Dim i As Long, nNames As Long
 Dim sName As String, epName As String
 Dim pNext As Long, lNext As Long
 Dim epFlag As Boolean, xpFlag As Boolean, nxp As Integer
 Dim xList As String, iTag As String

 xList = GetImports ' get list of self-Imported names, if any

 If vaExportDirTable = 0 Then
 GetExports = GetExports & vbLf & " no access to Export Table)"
 Exit Function
 End If

 CopyMemory exportdir, ByVal vaExportDirTable, LenB(exportdir)
 procTable = ImageRvaToVa(LoadImage.pFileHeader, _

LoadImage.MappedAddress, exportdir.pAddressOfFunctions, 0)
 nNames = exportdir.NumberOfNames
 If nNames = 0 Then Exit Function

 ExportNamePointerTableVA = ImageRvaToVa(LoadImage.pFileHeader, _

LoadImage.MappedAddress, _
exportdir.ExportNamePointerTableRVA, 0&)

 pNext = ExportNamePointerTableVA
 CopyMemory lNext, ByVal pNext, 4
 For i = 0 To nNames - 1
 lNext = ImageRvaToVa(LoadImage.pFileHeader, _

LoadImage.MappedAddress, lNext, 0&)
 sName = CSTRtoVBSTR(lNext)
 CopyMemory procAddress, ByVal procTable, 4
 epFlag = (procAddress = rvaEntryPoint) 'is this the entrypoint?
 xpFlag = InStr(xList, vbLf & sName)
 iTag = Space(4)
 If epFlag Then iTag = Space(2) & "* ": epName = sName
 If xpFlag Then iTag = Space(2) & "~ ": nxp = nxp + 1
 iTag = iTag & Hex(procAddress + dllBaseAddress) & ": " & sName
 GetExports = GetExports & vbLf & iTag
 pNext = pNext + 4
 procTable = procTable + 4
 CopyMemory lNext, ByVal pNext, 4
 Next

 If Len(epName) Or nxp Then ' add self-import info
 GetExports = GetExports & vbLf & " -------------------"
 If nxp Then GetExports = GetExports & vbLf & " ~ = auto-import"
 If Len(epName) Then _

GetExports = GetExports & vbLf & " * = entrypoint"
 Else
 GetExports = GetExports & vbLf & Space(4) & _

Hex(rvaEntryPoint + dllBaseAddress) & ": <entrypoint>"
 End If
 GetExports = GetExports & vbLf & " -------------------"
 End Function

 34

Module: vbcTools (ctd)

Function GetImports() As String
 Dim i As Long, nNames As Long
 Dim sName As String, pNames As String
 Dim pNext As Long, lNext As Long

 If vaImportDirTable = 0 Then Exit Function

 Dim pImportTable As Long
 Dim pLookupTable As Long
 Dim pLookupEntry As Long
 Dim LookupTableRVA As Long
 Dim DLLNameRVA As Long
 Dim DLLname As String

 pImportTable = vaImportDirTable ' set by LoadDLL

 Do
 CopyMemory LookupTableRVA, ByVal pImportTable, 4
 CopyMemory DLLNameRVA, ByVal pImportTable + 12, 4
 If LookupTableRVA = 0 And DLLNameRVA = 0 Then Exit Do
 pLookupTable = ImageRvaToVa(LoadImage.pFileHeader, _

LoadImage.MappedAddress, LookupTableRVA, 0&)
 DLLNameRVA = ImageRvaToVa(LoadImage.pFileHeader, _

LoadImage.MappedAddress, DLLNameRVA, 0&)
 DLLname = CSTRtoVBSTR(DLLNameRVA)
 If DLLname = EXENAME Then
 GoSub GetProcList
 Exit Function
 End If
 pImportTable = pImportTable + 20
 Loop
 Exit Function

GetProcList:
 Do While pLookupTable
 CopyMemory pLookupEntry, ByVal pLookupTable, 4
 If pLookupEntry = 0 Then Exit Do
 pNext = ImageRvaToVa(LoadImage.pFileHeader, _
 LoadImage.MappedAddress, pLookupEntry, 0&)
 sName = CSTRtoVBSTR(pNext + 2)
 pNames = pNames & vbLf & sName
 nNames = nNames + 1
 pLookupTable = pLookupTable + 4
 Loop
 GetImports = pNames
 Return
 End Function

 35

Module: DllForm
We show only the code here. Create the form, naming it DllForm, and set its BorderStyle to 5. Insert a
listbox, List1. Set the listbox font to Courier New (or some fixed font).

Private Sub Form_Resize()
 List1.Move 0, 0, Me.ScaleWidth, Me.ScaleHeight
 End Sub

Sub ShowStatus(vbCommand As String)
 Dim j%, token$()
 j = InStr(vbCommand, "/STATUS:"): EXEFILE = Mid(vbCommand, j + 8)
 j = InStrRev(EXEFILE, "\"): EXENAME = Mid$(EXEFILE, j + 1)
 Show
 LoadDLL
 With frmLinkInfo.List1
 .AddItem ""
 .AddItem " Export List: " & EXENAME
 token = Split(GetExports(), vbLf)
 For j = 0 To UBound(token): .AddItem token(j): Next
 .AddItem Format(Now, " HH:MM:SS DD MMM YY")
 .ListIndex = .ListCount - 1: DoEvents
 .ListIndex = -1
 End With
 UnMapAndLoad LoadImage
 End Sub

Sub ShowError(vbCommand As String)
 Dim F%, j%, temp$, fLine$
 j = InStr(vbCommand, "/STATUS:"): EXEFILE = Mid(vbCommand, j + 8)
 j = InStrRev(EXEFILE, "\"): EXENAME = Mid$(EXEFILE, j + 1)
 Show
 List1.AddItem ""
 List1.AddItem "An unexpected link error has occurred"
 List1.AddItem EXENAME & " link failed"
 List1.AddItem ""
 F = FreeFile
 On Error GoTo BadSign
 Open "c:\vbLink.log" For Input As #F
 Do
 Line Input #F, fLine
 j = InStr(fLine, "error")
 If j Then
 fLine = Mid$(fLine, j)
 j = InStr(fLine, """")
 If j Then
 temp = Left$(fLine, j - 1)
 j = InStr(fLine, """ (")
 If j Then fLine = temp & Mid$(fLine, j + 2)
 End If
 List1.AddItem "> " & fLine
 End If
 Loop Until EOF(F)
 Close #F
 Exit Sub
BadSign:
 List1.AddItem "The log file is not available"
 End Sub

 36

Appendix II: “C” Versions of the Client Test Programs

Here we provide “C” versions of the test-client programs Client1, Client2 and Client3 are listed below.
These have been tested with the gcc compiler distributed with MinGW. The gcc linker produces an EXE
in which the external API names are decorated with “@n”, where n is the number of bytes in the argument
list (ie. 4 * the number of parameters). For example, Client1 looks for IsPrime@4 and
DllGetClassObject$12 in CodeSample1.dll. This problem is resolved by linking CodeSample1.dll with
the appropriate alias definitions added to the VBC file. These commands are given below where
appropriate.

Client1.c

#include <windows.h>
#include <stdio.h>

int WINAPI IsPrime(int x);
IID rIID;

void RegisterThisApp(HINSTANCE hModule) {
 WNDCLASSEX wce;

 char szAppName[] = "CodeSample1_Client";
 wce.cbSize = sizeof(WNDCLASSEX);
 wce.style = CS_HREDRAW | CS_VREDRAW;
 wce.cbClsExtra = 0;
 wce.cbWndExtra = 0;
 wce.hInstance = hModule;
 wce.hCursor = LoadCursor(NULL, IDC_ARROW);
 wce.hIcon = NULL;
 wce.hbrBackground = NULL;
 wce.lpszMenuName = NULL;
 wce.lpszClassName = szAppName;
 wce.lpfnWndProc = DefWindowProc;
 wce.hIconSm = LoadIcon(hModule, IDI_APPLICATION);
 RegisterClassEx (&wce);
 }
void test(int n) {
 if (IsPrime(n)) printf(" %d is prime\n",n);
 else printf(" %d is not prime\n",n);
 }

int WINAPI WinMain (HINSTANCE hModule, HINSTANCE hPrevInstance,
 LPSTR command_line, int nCmdShow) {
 char option[2];
 int dummy;
 RegisterThisApp(hModule);
 printf("Call COM initialiser? "); gets(option);
 if ((strcmp(option, "y") == 0) || (strcmp(option, "Y") == 0)) {
 rIID.Data1 = 1; rIID.Data4[0] = 0xc0; rIID.Data4[7] = 0x46;
 DllGetClassObject((REFCLSID) &dummy, &rIID, (PVOID*) &dummy);
 }
 test(41);
 test(42);
 test(-43);
 }

 37

Additional VBC Commands

The decorated names generated by gcc require that CodeSample1.dll be built with aliases. These
should be added to the end of the standard VBC file described above:

• AddDef IsPrime@4 = IsPrime
• AddDef DllGetClassObject@12 = DllGetClassObject

Compile and Link Commands
• C:\MinGW\bin\gcc -c Client1.c -O3
• c:\MinGw\bin\gcc -o Client1 Client1.o CodeSample1.dll

 -lgdi32 –lm

Differences between GCC and PowerBasic versions

The input and output is done via stdin and stdout. This means that the only message box
displayed will be the error message from the DLL. Also, we find that the EXE’s produced by gcc
won’t operate correctly unless they begin by registering a window class. The reasons are unclear at
this stage, but without the RegisterThisApp call the gcc-linked Client1 program crashes when it
calls the DLL.

Client2.c

#include <windows.h>
#include <stdio.h>
int WINAPI IsPrime(int x);

void RegisterThisApp(HINSTANCE hModule) {
 WNDCLASSEX wce;
 char szAppName[] = "CodeSample1_Client";
 wce.cbSize = sizeof(WNDCLASSEX);
 wce.style = CS_HREDRAW | CS_VREDRAW;
 wce.cbClsExtra = 0;
 wce.cbWndExtra = 0;
 wce.hInstance = hModule;
 wce.hCursor = LoadCursor(NULL, IDC_ARROW);
 wce.hIcon = NULL;
 wce.hbrBackground = NULL;
 wce.lpszMenuName = NULL;
 wce.lpszClassName = szAppName;
 wce.lpfnWndProc = DefWindowProc;
 wce.hIconSm = LoadIcon(hModule, IDI_APPLICATION);
 RegisterClassEx (&wce);
 }
void test(int n) {
 if (IsPrime(n)) printf(" %d is prime\n",n);
 else printf(" %d is not prime\n",n);
 }
int WINAPI WinMain (HINSTANCE hModule, HINSTANCE hPrevInstance,
 LPSTR command_line, int nCmdShow) {
 RegisterThisApp(hModule);
 test(41);
 test(42);
 test(-43);
 }

 38

Additional VBC Commands

Add the following line to CodeSample2.vbc when making CodeSample2.dll:

• AddDef IsPrime@4 = IsPrime

Compile and Link Commands
• C:\MinGW\bin\gcc -c Client2.c -O3
• c:\MinGw\bin\gcc -o Client2 Client2.o CodeSample2.dll

 -lgdi32 –lm

Client3.c (part 1 of 3)

#include "windows.h"
#include <time.h>

void WINAPI vbEcho(int);

HINSTANCE hModule; // appn module handle
HWND MainWindow; // appn's window handle
time_t tLast; // last clock update
void CheckClock();
void CreateMainWindow();
void PaintWindow();
LRESULT CALLBACK
 WndProc (HWND hWnd, UINT wMsg,
 WPARAM wParam, LPARAM lParam);

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR command_line, int nCmdShow) {
 MSG msg;
 hModule = hInstance;
 CreateMainWindow();
 do { // the message pump
 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 if (msg.message == WM_QUIT) break;
 }
 CheckClock();
 Sleep(0);
 } while(1);
 }
void CheckClock() {
 time_t tNow;
 time (&tNow);
 if (tNow != tLast) {
 tLast = tNow;
 PaintWindow();
 InvalidateRect (MainWindow, 0, 0);
 UpdateWindow (MainWindow);
 }
 }

 39

Client3.c (part 2 of 3)

void CreateMainWindow() {
 WNDCLASSEX wce;
 char szAppName[] = "CodeSample3_Client";
 wce.cbSize = sizeof(WNDCLASSEX);
 wce.style = CS_HREDRAW | CS_VREDRAW;
 wce.lpfnWndProc = WndProc;
 wce.cbClsExtra = 0;
 wce.cbWndExtra = 0;
 wce.hInstance = hModule;
 wce.hCursor = LoadCursor(NULL, IDC_ARROW);
 wce.hIcon = NULL;
 wce.hbrBackground = NULL;
 wce.lpszMenuName = NULL;
 wce.lpszClassName = szAppName;
 wce.hIconSm = LoadIcon(hModule, IDI_APPLICATION);

 RegisterClassEx (&wce);

 MainWindow = CreateWindow(szAppName, // window class name
 "Mathimagics Demo 1: Client Application",
 WS_OVERLAPPEDWINDOW, // window style
 CW_USEDEFAULT, // initial x position
 CW_USEDEFAULT, // initial y position
 375, 200, // initial x size
 NULL, // parent window handle
 NULL, // window menu handle
 hModule, // instance handle
 NULL);

 ShowWindow (MainWindow, 1);
 }

void PaintWindow () {
 HDC hDC;
 RECT rectFill;
 RECT rectClient;
 int fStep1, fStep2;
 HBRUSH hBrush;
 int lOnBand;
 hDC = GetDC(MainWindow);

 GetClientRect (WindowFromDC(hDC), &rectClient);

 for (lOnBand = 0; lOnBand < 200; lOnBand++) {
 fStep1 = lOnBand * rectClient.bottom / 200;
 fStep2 = (lOnBand+1) * rectClient.bottom / 200;
 SetRect (&rectFill, 0, fStep1, rectClient.right + 1, fStep2);
 hBrush = CreateSolidBrush(RGB(0, 0, (255 - lOnBand)));
 FillRect (hDC, &rectFill, hBrush);
 DeleteObject(hBrush);
 }
 }

 40

Client3.c (part 3 of 3)

Additional VBC Commands

Add the following line to CodeSample3.vbc when making CodeSample3.dll:

• AddDef vbEcho@4 = vbEcho

Compile and Link Commands
• C:\MinGW\bin\gcc -c Client3.c -O3
• c:\MinGw\bin\gcc -o Client3 Client3.o CodeSample3.dll

 -lgdi32 –lm

 LRESULT CALLBACK WndProc (HWND hWnd, UINT wMsg,
 WPARAM wParam, LPARAM lParam)
 {
 HDC hDC;
 PAINTSTRUCT pPaint;
 RECT tRect;
 DWORD dOpts;

 switch (wMsg) {
 case WM_PAINT:
 hDC = BeginPaint(hWnd, &pPaint);
 dOpts = DT_SINGLELINE | DT_CENTER | DT_VCENTER;
 GetClientRect(hWnd, &tRect);
 SetBkMode (hDC, TRANSPARENT);
 SetTextColor (hDC, RGB(255,255,255));
 DrawText (hDC, ctime(&tLast), 24, &tRect, dOpts);
 tRect.top += 54;
 SetTextColor (hDC, RGB(255,255,192));
 DrawText (hDC, "<< Keystroke Logger (\"C\" version) >>",
 -1, &tRect, dOpts);
 EndPaint (hWnd, &pPaint);
 return 1;

 case WM_ERASEBKGND:
 hDC = (HDC) wParam;
 PaintWindow();
 return 1;

 case WM_DESTROY:
 PostQuitMessage (0);
 return 0;

 case WM_CHAR:
 vbEcho(wParam); // *** DLL ***
 SetForegroundWindow(MainWindow);
 return 0;
 }
 return DefWindowProc(hWnd, wMsg, wParam, lParam);
 }

