
Hidden Gems for Free

Exposing undocumented
memory access functions

in Visual Basic 6

Michel Rutten

Pop Quiz

Do you…

need flexible but efficient memory access in
your Visual Basic programs?

want to dereference pointer values in pure VB?
want to cast instead of coerce?
become tired of slashing with a block moving

sledgehammer at a single DWord only because
you have no better suited tool?

get disappointed by VB's total lack of support
for these kind of operations?

sometimes find yourself longing back to
GWBASIC, because at least it had Peek and Poke?

If you have responded Yes! to any of these questions,
then this article might relieve the pain a bit…

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

1 of 28 4/10/2016 2:39 PM



Contents

Pop Quiz
Contents

1. Introduction
2. The VB Runtime Library

2.1 Hidden Gems
2.2 GetMem
2.3 PutMem

3. Declarations
4. The Type Library

4.1 Basic declarations
4.2 Property syntax
4.3 Casting
4.4 Structures
4.5 Untyped assignment
4.6 VarPtr tricks
4.7 Goodies

5. License
6. Conclusion

Notes
Copyright

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

2 of 28 4/10/2016 2:39 PM



1. Introduction

Techically savvy Visual Basic programmers for long have had to deal with VB's
limited type system and lack of support for casting and pointer manipulation.
Although type-safety generally is a very good thing, when you need to call the
windows API or optimize a piece of code the strict type checking mechanism
only tends to get in the way. Unfortunately, apart from a couple of unsupported
low-level statements (i.e. VarPtr, ObjPtr, StrPtr and AddressOf) the language

simply does not like untyped data and does a good job of discouraging you to
use it. Most VB programmers eventually learn to live with this and unwillingly
resort to the far from elegant but seemingly omnipresent abuse of an otherwise
obscure API function exported by kernel32.dll, the discovery - and for that
matter also first application in this context - of which should be contributed to
Hardcore Visual Basic author and (classic) VB guru Bruce McKinney, although
the entry point is actually quite useful for VB programmers when used to do
what it was meant for in the first place.
Readers who haven't got the slightest clue which particular function is being
referred to are advised to at least try to get with the program first and return to
this article only if they still have an healthy appetite for more delicatessen.
However if you are into VB gourmet then you are invited to stray from the path
layed out for us mortals by the code gurus on mount Olympus (sorry Bruce, no
hard feelings) and join in this copious feast of strange fruits and the likes. As
most exotic food, it may take some time getting used to, so don't let that slight
nausea at the third three finger salute turn you down, but hang in there and
keep trying - carefully that is. Ultimately, you will be rewarded with both fast and
elegant code, as well as a bit of insight into the intestines of your favourite
programming environment.

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

3 of 28 4/10/2016 2:39 PM



2. The VB Runtime Library

2.1 Hidden gems

All Visual Basic programs require and reference an associated run-time library.

For Visual Basic 6 this file is named msvbvm60.dll1. Usually it is located in the
windows system folder. This file contains the compiled code and type library
declarations for the built-in standard objects belonging to the VBA and VBRUN
namespaces, as the Object Browser description clearly states on the status label
when selecting them from the combobox. Apart from the regular VB objects, the
runtime library also exports quite a lot of stdcall functions that are apparently

necessary for executing VB code, as one can see by examining it's export table
using the dependency viewer.

Because any VB application per definition requires this dll, any extra functionality
we may get out of this library we get for free, i.e. without adding an extra
external dependency to the project. Consequently, a scan through the list of
exported functions might just reveal a couple of hidden gems waiting for us to
get our dirty fingers on. It turns out that most of the exported functions are of
little use to us, either because their names suggests that they implement a trivial
VB command or because it is unclear what operations they perform and what
arguments they expect. However there are a couple of members that clearly
stand out because of their descriptive and provocative function names. They are
exported as:

GetMem1
GetMem2
GetMem4
GetMem8

PutMem1
PutMem2
PutMem4
PutMem8

Their names suggest that these functions read or write a value of the indicated
size from or to memory, offering an interesting prospect at the very least. Do
these functions indeed offer direct memory access? And if so, is it possible to
call them from Visual Basic? Since there is no documentation available, the best
way to make sure is by generating and inspecting an assembly listing. Mind you
the EULA strictly forbids this… so get ready to go underground and let's take a

peek2.

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

4 of 28 4/10/2016 2:39 PM



2.2 GetMem

This is the assembly listing for the GetMem functions:

GetMem1 GetMem2 GetMem4

mov eax, [esp+4] mov eax, [esp+4] mov eax, [esp+4] ; Get first argument

mov ecx, [esp+8] mov ecx, [esp+8] mov ecx, [esp+8] ; Get second argument

mov al, [eax] mov ax, [eax] mov eax, [eax] ; Dereference first

mov [ecx], al mov [ecx], ax mov [ecx], eax ; Store value in second

xor eax, eax xor eax, eax xor eax, eax ; Return (HRESULT) S_OK

ret 8 ret 8 ret 8 ;

GetMem8

mov eax, [esp+4] ; Get first argument

mov ecx, [esp+8] ; Get second argument

mov edx, [eax] ; Dereference low dword of first argument

mov eax, [eax+4] ; Dereference high dword

mov [ecx], edx ; Store low dword in second argument

mov [ecx+4], eax ; Store high dword

xor eax, eax ; Return (HRESULT) S_OK

ret 8 ;

The assembly listings show that the GetMemN functions dereference the memory

address given by the first argument and return the value stored at that address
in the second argument for a variable size of either one, two, four or eight
bytes. The fact that the eax register is always cleared indicates that VB should

call these functions as Subs, that they never raise an error and that we should

not decorate the return value parameter with the retval IDL attribute.

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

5 of 28 4/10/2016 2:39 PM



2.3 PutMem

This is the assembly listing for the PutMem functions:

PutMem1 PutMem2 PutMem4

mov ecx, [esp+4] mov ecx, [esp+4] mov ecx, [esp+4] ; Get first argument

mov al, [esp+8] mov ax, [esp+8] mov eax, [esp+8] ; Get second argument

mov [ecx], al mov [ecx], ax mov [ecx], eax ; Store value in first

xor eax, eax xor eax, eax xor eax, eax ; Return (HRESULT) S_OK

ret 8 ret 8 ret 8 ;

PutMem8

mov eax, [esp+4] ; Get argument

mov ecx, [esp+8] ; Get second argument

mov [eax], ecx ; Store value in low dword of first argument

mov ecx, [esp+C] ; Get third argument

mov [eax+4], ecx ; Store value in high dword of first argument

xor eax, eax ; Return (HRESULT) S_OK

ret C ;

The PutMem functions are the counterparts of the GetMem functions. They write

the value of the second argument at the memory address given by the first
argument for different variable sizes.

Note: the run-time library contains additional functions within this family so the
above list is not exhaustive. The GetMem-family also includes GetMemObj and

GetMemEvent, which expect and return an object variable and call Addref if the

specified argument is not Nothing, GetMemNewObj, which creates an object

instance, and GetMemVar and GetMemStr, which use OleAut32.dll to copy a

variant or string variable. For each GetMemX function the library contains an

associated PutMemX function. Furthermore it contains a set of SetMem functions

for use with object variables. However due to the additional processing these
functions are less suitable for creating usefull aliases.

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

6 of 28 4/10/2016 2:39 PM



3. Declarations

The easiest way to use a stdcall function from Visual Basic is to write a

Declare statement for it. A set of straighforward declarations for this family of

runtime library functions would be:

Declare Sub GetMem1 Lib "msvbvm60" (ByVal Addr As Long, RetVal As Byte)
Declare Sub GetMem2 Lib "msvbvm60" (ByVal Addr As Long, RetVal As Integer)
Declare Sub GetMem4 Lib "msvbvm60" (ByVal Addr As Long, RetVal As Long)
Declare Sub GetMem8 Lib "msvbvm60" (ByVal Addr As Long, RetVal As Currency)

Declare Sub PutMem1 Lib "msvbvm60" (ByVal Addr As Long, ByVal NewVal As Byte)
Declare Sub PutMem2 Lib "msvbvm60" (ByVal Addr As Long, ByVal NewVal As Integer)
Declare Sub PutMem4 Lib "msvbvm60" (ByVal Addr As Long, ByVal NewVal As Long)
Declare Sub PutMem8 Lib "msvbvm60" (ByVal Addr As Long, ByVal NewVal As Currency)

Alternatively one could use:

Declare Sub GetMem1 Lib "msvbvm60" (Ptr As Any, RetVal As Byte)
Declare Sub GetMem2 Lib "msvbvm60" (Ptr As Any, RetVal As Integer)
Declare Sub GetMem4 Lib "msvbvm60" (Ptr As Any, RetVal As Long)
Declare Sub GetMem8 Lib "msvbvm60" (Ptr As Any, RetVal As Currency)

Declare Sub PutMem1 Lib "msvbvm60" (Ptr As Any, ByVal NewVal As Byte)
Declare Sub PutMem2 Lib "msvbvm60" (Ptr As Any, ByVal NewVal As Integer)
Declare Sub PutMem4 Lib "msvbvm60" (Ptr As Any, ByVal NewVal As Long)
Declare Sub PutMem8 Lib "msvbvm60" (Ptr As Any, ByVal NewVal As Currency)

A quick test in the VB IDE debug window confirms that the GetMem and PutMem

functions operate as expected. The Declare statements extend the language

with some powerful memory access features. They allow reading from and

writing to any memory location (given sufficient access permissions3) as if it
were declared as a Byte, Integer, Long or Currency variable. In combination

with the built-in VarPtr function, or a ByRef argument declaration as

demonstrated in the second set of declarations, this opens up the possibility for
type casting.

But wait! There's more...

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

7 of 28 4/10/2016 2:39 PM



4. The Type Library

Declare statements in code modules have several limitiations and disadvantages

that can be circumvented by moving the declarations to a type library4:

Because a typelib is language-independent it offers many more
data types and expressions than VB itself, allowing declarations
that can be used from but are impossible to specify in VB itself,
e.g. function arguments that expect a Unicode string (LPWSTR) or

a by value object interface (IUnknown*).

Declarations in a typelib may be decorated with IDL attributes that
offer meta-information to the compiler about the target, allowing
finer control on the compiler-generated code (e.g. if
GetLastError should be called) and the syntax that a declaration

requires in VB (e.g. Sub, Function or Property).

Each Declare statement in a code module increases the size of

the compiled executable with at least 20 bytes. When using a type
library, the executable will be smaller because the linker only
includes the declarations that are actually used. This means that a
type library can be continuously extended without unnecessarily
bloating the executable.
Function calls are faster when using a typelib instead of Declare

statements because the external references are resolved at
compile-time instead of run-time.
Each declaration can be labeled with a description string that will
be displayed in the Object Browser when the item is selected,
including constants and members of enumerations and
structures.
Code modules with a lot of Declare statements can slow down or

even destabilise the VB environment. A typelib puts less of a
strain on the IDE, even when it contains a large number of
declarations, because it is already in compiled form.

The type library accompanying this article is called vbvm6lib.tlb, which stands
for Visual Basic 6 Virtual Machine Type Library, which is also the description by
which the library can be identified in the references dialog. The name of the type
library is VB6, which may be used as a prefix for a type specifier to explicitly
specify that a referenced type declaration belongs to this library, e.g. VB6.DWord.

The module containing the function declarations is called VBVM6, the name of
which may also be used as a function prefix to specify that a referenced function
declaration belongs to this library, e.g. VBVM6.MemLong. The following section will

offer a brief explanation of the declarations it contains.

It is beyond the scope of this article to explain all the intricacies of writing a type
library. Suffice it to say that extensive documentation and many tutorials can be

found both in the MSDN library and (elsewhere) on the internet5. To be able to
use a type library in VB, you only have to know where to find the references
dialog and the object browser. You do not need to understand the IDL (let alone

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

8 of 28 4/10/2016 2:39 PM



the assembly) source code, however it does help a great deal in understanding
how to use these declarations.

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

9 of 28 4/10/2016 2:39 PM



4.1 Basic declarations

Let's first concentrate on the aliases for the GetMem and PutMem functions. This
is a basic IDL declaration for the GetMem4 function:

[entry("GetMem4")]
HRESULT __stdcall GetMem4(
    [in]           int   Address,
    [out, retval]  int * lpRetVal
);

Assuming that Address is a Long variable containing a valid memory location,
and Value is a Long variable to receive the function return value, the next
statement shows how to call the function:

' Fetch the Long at the given memory address
Call GetMem4(Address, Value)

The associated PutMem4 declaration would look like this:

[entry("PutMem4")]
HRESULT __stdcall PutMem4(
    [in]           int   Address,
    [in]           int   NewValue
);

Assuming that Address is a Long variable containing a valid memory location,
and NewValue is a Long variable containing a value to store, this is how the
function would be called:

' Change the Long at the given memory address
Call PutMem4(Address, NewValue)

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

10 of 28 4/10/2016 2:39 PM



4.2 Property syntax

One of the advantages of using IDL is that it allows us to add special attributes
to a declaration. We can improve the former declarations by adding a
helpstring that describe the member when it is selected in the Object Browser.

Even better, we can change the above statements into an associated pair of
property procedures by giving both functions the same name and adding the
IDL attributes propget and propput. I decided to drop the Get and Put prefixes,

keep the Mem term in the name as a common prefix and use the name of the

associated data type as a suffix, in this case resulting in the name MemLong as

the following example demonstrates:

[
    entry("GetMem4"), propget,
    helpstring("Accesses the Long value at the given address.")
]
HRESULT __stdcall MemLong(
    [in]           int   Address,
    [out, retval]  int * lpRetVal
);

[
    entry("PutMem4"), propput
]
HRESULT __stdcall MemLong(
    [in]           int   Address,
    [in]           int   NewValue
);

The improved IDL declaration allows us to access the GetMem/PutMem function
pair from VB as an indexed read/write property:

Dim Address As Long
Dim Value As Long
Dim NewValue As Long

' ...

' Read the current value of the Long integer
' stored at the given memory location
Value = MemLong(Address)

' ...

' Change the value of the Long integer
' at the given memory location
MemLong(Address) = NewValue

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

11 of 28 4/10/2016 2:39 PM



This syntax is quite self-descriptive. One would almost start to think that this
property is some native but hidden VB statement, and in a sense it is since we
do not rely on any external dependencies but instead only exploit some basic
features built into the standard run-time library.

After adding such a declaration to the library for each of the eight functions, the
Object Browser will show the following properties:

' Access memory location as if it were a 64-bit Currency variable
Property Get MemCurr(ByVal Address As Long) As Currency
Property Let MemCurr(ByVal Address As Long, ByVal NewValue As Currency)

' Access memory location as if it were a 32-bit Long variable
Property Get MemLong(ByVal Address As Long) As Long
Property Let MemLong(ByVal Address As Long, ByVal NewValue As Long)

' Access memory location as if it were a 16-bit Integer variable
Property Get MemWord(ByVal Address As Long) As Integer
Property Let MemWord(ByVal Address As Long, ByVal NewValue As Integer)

' Access memory location as if it were a Byte variable
Property Get MemByte(ByVal Address As Long) As Byte
Property Let MemByte(ByVal Address As Long, ByVal NewValue As Byte)

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

12 of 28 4/10/2016 2:39 PM



4.3 Casting

The previous properties all expect an explicit memory address as the first
argument. We can alter these declarations so they expect an As Any argument

as the first parameter. That way we can specify any variable as the source and
access it as if it were a Byte, Integer, Long or Currency, effectively casting

it's value. I decided to use the common prefix As to indicate a cast operation,

and again indicate the data type as a suffix, in this case resulting in the name
AsLong:

[
    entry("GetMem4"), propget,
    helpstring("Accesses the argument cast to a Long.")
]
HRESULT __stdcall AsLong(
    [in]          void * Ptr,
    [out, retval] int  * lpRetVal
);

[
    entry("PutMem4"), propput,
]
HRESULT __stdcall AsLong(
    [in]          void * Ptr,
    [in]          int    NewValue
);

This demonstrates how to call this property:

Dim DW As VB6.DWord
Dim L As Long
Dim HiW As Integer, LoW As Integer

' Initialize the DWord structure
DW.HiWord = &HAABB
DW.LoWord = &HCCDD

' Cast it to a long
L = AsLong(DW)
Debug.Print Hex$(L)
' Outputs AABBCCDD

' Change the DWord structure as a Long integer
AsLong(DW) = &HABCD1234

' Display the new value of the structure members
HiW = DW.HiWord
LoW = DW.LoWord
Debug.Print Hex$(HiW), Hex$(LoW)
' Prints: ABCD  1234

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

13 of 28 4/10/2016 2:39 PM



Adding such an alias to the type library for each of the functions leads to the
following set of properties:

' Access given variable as if it were a 64-bit Currency
Property Get AsCurr(Ptr As Any) As Currency
Property Let AsCurr(Ptr As Any, ByVal NewValue As Currency)

' Access given variable as if it were a 32-bit Long
Property Get AsLong(Ptr As Any) As Long
Property Let AsLong(Ptr As Any, ByVal NewValue As Long)

' Access given variable  as if it were a 16-bit Integer
Property Get AsWord(Ptr As Any) As Integer
Property Let AsWord(Ptr As Any, ByVal NewValue As Integer)

' Access given variable as if it were a Byte
Property Get AsByte(Ptr As Any) As Byte
Property Let AsByte(Ptr As Any, ByVal NewValue As Byte)

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

14 of 28 4/10/2016 2:39 PM



4.4 Structures

By adding a series of structures (User Defined Types) to the type library, we can
also make aliases that allows us to extract the individual DWords, Words or
Bytes out of a larger sized value:

[helpstring("A 32-bit dword represented by two integers.")]
typedef struct DWord {
    [helpstring("Least significant 16-bit word.")] short LoWord;
    [helpstring("Most significant 16-bit word.")]  short HiWord;
} DWord;

[
    entry("GetMem4"),
    helpstring("Returns the argument cast to a DWord structure.")
]
HRESULT __stdcall AsDWord(
    [in]          void  * Ptr,
    [out, retval] DWord * lpRetVal
);

Example:

Dim L As Long
Dim DW As VBVM6.DWord
Dim HiW As Integer, LoW As Integer

' Initialize a Long integer value
L = &H12345678

' Cast it to a DWord structure
DW = AsDWord(L)

' Extract the individual member values
HiW = DW.HiWord ' Now contains &H1234
LoW = DW.LoWord ' Now contains &H5678

Debug.Print Hex$(HiW), Hex$(LoW)
' Prints:  1234  5678

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

15 of 28 4/10/2016 2:39 PM



The type library contains the following structures:

Name Size Description

DByte 16 bits Two Bytes representing one Word (Integer)

QByte 32 bits Four Bytes representing one DWord (Long integer)

DWord 32 bits Two Words representing one DWord

OByte 64 bits Eight Bytes representing one QWord(Currency)

QWord 64 bits Four Words representing one QWord

DLong 64 bits Two Longs representing one QWord

DByteArray 16 bits Array of two Bytes representing one Word

QByteArray 32 bits Array of four Bytes representing one DWord

DWordArray 32 bits Array of two Words representing one DWord

OByteArray 64 bits Array of eight Bytes representing one QWord

QWordArray 64 bits Array of four Words representing one QWord

DLongArray 64 bits Array of two Longs representing one QWord

As the table shows there are two different structure declarations for each
possible data size (1, 2, 4 or 8 bytes); one structure that represents the
elements as named members of a record, and another that represents the
elements as items of a fixed-size array. Depending on the situation, one may be
more convenient than the other. Each structure is accompanied by an associated
GetMem declaration that returns the value of a memory location in a variable of
that type. Unfortunately Visual Basic does not allow passing UDTs by value, so
there is no point in extending the type library with PutMem declarations using
these structured types.

Keep in mind that, altough the syntax might suggest that these functions return
some kind of writable object referencing the original memory location, in fact
they return a newly created structure containing a copy of the source argument.
So do not be tempted to try a statement like:

' Won't work as expected
MemDWord(Address).LoWord = NewValue

For this reason the propget IDL attribute has not been assigned to these

declarations, so VB identifies them as functions, note properies, and the
associated helpstrings all indicate Read Only.

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

16 of 28 4/10/2016 2:39 PM



The following table lists the aliases that return a structure:

' Return the associated structure at given Address
Function MemDByte(ByVal Address As Long) As DByte
Function MemQByte(ByVal Address As Long) As QByte
Function MemDWord(ByVal Address As Long) As DWord
Function MemOByte(ByVal Address As Long) As OByte
Function MemQWord(ByVal Address As Long) As QWord
Function MemDLong(ByVal Address As Long) As DLong

' Cast the given argument to the associated structure
Function AsDByte(Ptr As Any) As DByte
Function AsQByte(Ptr As Any) As QByte
Function AsDWord(Ptr As Any) As DWord
Function AsOByte(Ptr As Any) As OByte
Function AsQWord(Ptr As Any) As QWord
Function AsDLong(Ptr As Any) As DLong

' Return the associated fixed-size array
' structure at given Address
Function MemDByteArr(ByVal Address As Long) As DByteArr
Function MemQByteArr(ByVal Address As Long) As QByteArr
Function MemDWordArr(ByVal Address As Long) As DWordArr
Function MemOByteArr(ByVal Address As Long) As OByteArr
Function MemQWordArr(ByVal Address As Long) As QWordArr
Function MemDLongArr(ByVal Address As Long) As DLongArr

' Cast the given argument to the associated
' fixed-size array array structure
Function AsDByteArr(Ptr As Any) As DByteArr
Function AsQByteArr(Ptr As Any) As QByteArr
Function AsDWordArr(Ptr As Any) As DWordArr
Function AsOByteArr(Ptr As Any) As OByteArr
Function AsQWordArr(Ptr As Any) As QWordArr
Function AsDLongArr(Ptr As Any) As DLongArr

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

17 of 28 4/10/2016 2:39 PM



4.5 Untyped Assignment

There may be cases that require a transfer of some value into a custom type, in
which case the previous declarations cannot be used because of their predefined
return value data type. Therefore, as a last resort, I implemented a series of
aliases with both arguments declared untyped, all starting with the prefix
'Assign'. They are decorated so that VB will interpret them as regular VB Subs in

which the target variable must be given as a ByRef argument, to allow variables
of any type to receive the return value.

This is an example of such a declaration:

[
    entry("GetMem1"),
    helpstring("Assigns a byte from source to destination argument.")
]
HRESULT __stdcall AssignByte(
    [in]      void * Source,
    [in, out] void * Destination
);

And this demonstrates how to use this function:

' Define a custom type
' This one fits in a DWord
Private Type CustomType
   SomeWord As Integer
   FirstByte As Byte
   SecondByte As Byte
End Type

' ...

Dim aType As CustomType
Dim aLong As Long

' Initialize a Long
aLong = -1&

' Assign the Long to the structure
Call AssignDWord(aLong, aType)

' Show the assignment result
Debug.Print Hex$(aType.SomeWord),
Debug.Print Hex$(aType.FirstByte),
Debug.Print Hex$(aType.SecondByte)

' Displays FFFF  FF  FF

Both the As Any parameter declarations and the illogical, reversed order of the

arguments makes these functions extremely error-prone, though one could
argue this holds for the module as a whole.

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

18 of 28 4/10/2016 2:39 PM



4.6 VarPtr tricks

The VarPtr function simply returns the DWord value pushed onto the stack by

the caller. The assembly code looks like this:

VarPtr

mov eax, [esp+4] ; Dereference the first argument

ret 4 ; Return the result

The built-in VarPtr, StrPtr and ObjPtr functions are actually three different

(hidden) aliases for the same function, as the original IDL declarations clearly
show:

[entry("VarPtr"), hidden]
long _stdcall VarPtr([in] void * Ptr);

[entry("VarPtr"), hidden]
long _stdcall StrPtr([in] BSTR Ptr);

[entry("VarPtr"), hidden]
long _stdcall ObjPtr([in] IUnknown * Ptr);

In addition to these three aliases we can write some useful declarations for this
function of our own.

The ArrPtr function obtains a pointer to the SAFEARRAY structure of any array

argument except string arrays due to Visual Basic's implicit Unicode/ANSI
conversion.

Function ArrPtr(Ptr() As Any) As Long

We have to declare a special StrArrPtr alias for string arrays using a BSTR

parameter declaration, because a SAFEARRAY(void)* parameter declaration

causes VB to pass in a pointer to a temporary array of ANSI converted strings.
Upon returning from ArrPtr, this pointer will be invalid because the temporary

array will already have been destroyed. By using a SAFEARRAY(BSTR)* parameter

declaration, the original string array pointer itself is being passed in and
consequently returned.

Function StrArrPtr(Ptr() As String) As Long

By aliasing the VarPtr function's return value, we can construct functions that
return a copy of the source pointer cast to a reference variable type.

The AsString function casts a pointer to a Visual Basic (BSTR) String variable.

The returned string will reference the characters at the given address, but also
include the preceding DWord which will be interpreted as the string length,

limiting it's usefulness. This function is the opposite of VBA.StrPtr and

VBVM6.StringPtr.

Function AsString(ByVal BSTR As Long) As String

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

19 of 28 4/10/2016 2:39 PM



VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

20 of 28 4/10/2016 2:39 PM



The StringRef function returns a second (stolen) reference to the Source string

argument. The returned string will be pointing to the same characters as the
given string. The caller is responsible for clearing the stolen reference without
freeing the allocated memory.

Function StringRef(BSTR As String) As String

Example:

Dim sSource As String
Dim sStolen As String
' ...
sStolen = StringRef(sSource)
' sStolen and sSource now point
' to the same characters
' ...
' Clean up
StringPtr(sStolen) = 0&

The AsObject function casts a pointer to an IUnknown object interface pointer.

No reference counting is performed. This function is the opposite of VBA.ObjPtr

and VBVM6.ObjectPtr. It is perfectly suited for casting a stolen object reference

back to an object interface pointer.

Function AsObject(ByVal Ptr As Long) As IUnknown

The NoAddRef function returns an uncounted (stolen) object reference. No

reference counting is performed. The caller is responsible for keeping the object
alive as long as the reference is in use and should clear the stolen reference
without decreasing the reference count. Note that the argument has been
declared As Any instead of As IUnknown to prevent VB from calling AddRef on

the given object argument value.

Function NoAddRef(Object As Any) As IUnknown

Example:

Dim oSource As Object
Dim oNotCounter As Object
' ...
Set oNotCounted = NoAddRef(oSource)
' oNotCounted now contains an
' uncounted reference to oSource
' ...
' Clean up
ObjectPtr(oNotCounted) = 0&

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

21 of 28 4/10/2016 2:39 PM



4.7 Goodies

In addition to the previously mentioned generic declarations, the powerful IDL
syntax allows us to write some very specific aliases that deal with the native VB
reference types Variant, String, Object and (safe-)arrays.

The VariantType property sets or returns the (unmodified) VARTYPE member of

the given VARIANT argument. It allows read/write access to the same value as

returned by the built-in VBA.VarType function, but that function masks out the

VB_BYREF flag and this property doesn't.

Property Get VariantType(V As Variant) As Integer
Property Let VariantType(V As Variant, ByVal NewValue As Integer)

The StringPtr property sets or returns the value of the BSTR argument's string

pointer, the memory address of the string's first character. It allows read/write
access to the same value as returned by the VBA.StrPtr function.

Property Get StringPtr(S As String) As Long
Property Let StringPtr(S As String, ByVal NewValue As Long)

The SAPtr property sets or returns the value of the array argument's

SAFEARRAY pointer, the memory address of the SAFEARRAY structure describing

the given array. The argument can be an array of any type except String due to
the ANSI/Unicode conversion. Use the special StrArrPtr for string arrays.

Property Get SAPtr(Arr() As Any) As Long
Property Let SAPtr(Arr() As Any, ByVal NewValue As Long)

The StrSAPtr property sets or returns the value of the string array argument's

SAFEARRAY pointer. It circumvents the ANSI/Unicode conversion that is

performed when calling the VBVM6.ArrPtr property with a string array

argument.

Property Get StrSAPtr(StrArr() As String) As Long
Property Let StrSAPtr(StrArr() As String, ByVal NewValue As Long)

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

22 of 28 4/10/2016 2:39 PM



The ObjectPtr property sets or returns the value of the given object argument's

object pointer. It allows read/write access to the same value as returned by the
VBA.ObjPtr function. This function could be made slightly more type-safe by

declaring the arguments as IUnknown** (i.e. ByRef IUnknown), but this would

cause VB to QueryInterface the given object argument before and Release it

after calling the function, unnecessarily slowing the function call down (a lot).
However, because VB always supplies object pointers by reference regardless of
how the argument is specified (be it either ByVal or ByRef, As Object or As Any),
which is what this function expects in order to return a valid result, we can
safely declare the argument as void* without introducing possible ambiguities.

Actually this produces the same declarations as the MemLong aliases, but the
property name allows for more readable code in this specific use case.

Property Get ObjectPtr(ByVal Obj As Any) As Long
Property Let ObjectPtr(ByVal Obj As Any, ByVal NewValue As Long)

The VTablePtr property sets or returns the value of the object argument's

VTable pointer. It allows read/write access to the value at the memory location
returned by the VBVM6.ObjectPtr and VBA.ObjPtr functions, which contains the

object interface or VTable pointer. This means that VTablePtr(AnObject)

accesses the same value as MemLong(ObjectPtr(AnObject)). The IUnknown*

argument causes VB to perform a pair of AddRef and Release calls on the given

object argument before and after calling the function, causing a slight
performance hit. However this declaration is required for the function to operate
correctly. Note that it is impossible to declare such a by value object parameter
in Visual Basic code, because object arguments of VB-generated functions
always expect pointers to objects; a parameter declared as ByVal AnObject As

Object still causes VB to supply a pointer to an object as the function argument,

although it is a copy of the original object pointer (so the function cannot modify
the original caller's value), but not the value of the pointer itself as defined by
the IUnknown* idl type declaration this property uses (which VB does recognize

as such).

Property Get VTablePtr(Obj As IUnknown) As Long
Property Let VTablePtr(Obj As IUnknown, ByVal NewValue As Long)

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

23 of 28 4/10/2016 2:39 PM



Regular Visual Basic objects store their reference count at the memory location
immediately following the VTable pointer. The GetUnkDesc and

GetUnkDescFromPtr function declarations alias the GetMem8 run-time function to

return this information for a given VB object in the form of the VBUnkDesc

structure:

' Internal object descriptor pointed to by a standard
' Visual Basic (in-process) IUnknown object interface
' pointer, i.e. by object references stored in variables
' that have been declared "As IUnknown".
Type VBUnkDesc
   ' Pointer to the object interface's VTable structure.
   ' Applies to all COM object interface pointers.
   pVTable As Long
   ' Object reference count. Only applies to IUnknown
   ' interface pointers of objects with the default
   ' Visual Basic reference counting mechanism.
   RefCnt As Long
End Type

Property Get GetUnkDesc(Obj As IUnknown) As VBUnkDesc
Property Get GetUnkDescFromPtr(ByVal Ptr As Long) As VBUnkDesc

The descriptor structure is 8 bytes long, nicely fitting the GetMem8 runtime library

function. The pVTable member will always be valid for any COM object (per

definition), but the RefCnt value is only valid if the variable that is being supplied

as the function argument has actually been declared As IUnknown. Because of

the IUnknown* parameter declaration, VB will AddRef and Release the given

object before and after calling the function, so the returned reference count will
always be one more than expected. A typical application of this alias would be
such a function:

Function GetRefCnt(AnObject As stdole.IUnknown) As Long
   ' Since all COM objects implement IUnknown, the argument
   ' type declaration causes VB to simply call AddRef (not
   ' QueryInterface) on the given object argument value

   ' Protect against NULL objects (or GetUnkDesc will GPF!)
   If (AnObject Is Nothing) Then Exit Sub

   ' Subtract 2 to compensate for the AddRef calls that are
   ' caused by the IUnknown function arguments
   GetRefCnt = VBVM6.GetUnkDesc(AnObject).RefCnt - 2&

End Function

Assuming that the variable pUnk contains a valid IUnknown interface pointer, then

the following holds:

GetUnkDesc(pUnk).VTable := VTablePtr(pUnk)
GetUnkDesc(pUnk).RefCnt := MemLong(ObjectPtr(pUnk) + 4)

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

24 of 28 4/10/2016 2:39 PM



5. License

The Visual Basic 6 Virtual Machine Type Library binary and source code are

released under the MIT license*, which is similar in effect to the BSD licence
(this licence is Open Source certified and complies with the Debian Free
Software Guidelines).

The license grants unrestricted rights to anyone (including companies) to copy,
modify, and redistribute the VBVM6Lib type library and it's source code (even for
commercial purposes) as long as the original copyright and license terms are
retained. However the library is not covered by any warranty and if it causes
damage you're on your own, so do not use it if you're unhappy with that. In
particular, note that the MIT licence is compatible with the GNU GPL. Therefore it
is allowed to incorporate VBVM6Lib or pieces of it into a GPL program.

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

25 of 28 4/10/2016 2:39 PM



6. Conclusion

And there you have it: unrestricted memory access and type casting in pure
Visual Basic. The VBVM6Lib type library offers the advanced VB programmer a
complete range of assorted low-level functions in a reasonably readable syntax,
considering the technical character of these operations. It relies completely on a
couple of very basic functions that are built into the VB runtime library, so using
these aliases does not introduce any external dependencies into the project
whatsoever.
In view of the technical and unprotected character of these functions it must be
said that this type library is not for the faint of heart. Any protection that Visual
Basic traditionally offers is out of the way so it's up to the caller to ensure that
these functions are called with valid arguments. Therefore when experimenting
with these functions it is strongly advised to use an OS that has strong
interprocess protection, otherwise the system probably has to be rebooted on

each and every invalid call6. Mind you, this risk is not related to the Visual Basic
programming language but inherent to direct and unprotected memory access.
In any case caution is advised.
However assuming that you know what you are doing, this type library will allow
you to pull the same low-level tricks in Visual Basic as in any given programming
language. So no more excuses saying that you can't do that in VB anymore.
Open the references dialog, select the Visual Basic 6 Virtual Machine Type
Library and just do it.

Happy programming!

Michel Rutten

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

26 of 28 4/10/2016 2:39 PM



Notes

Note 1 Although this article and the associated type library target the Visual Basic 6 run-time
library msvbvm60.dll, most of the described techniques could probably be ported to VB5 and the
msvbvm50.dll run-time library, since it too contains the family of GetMem/PutMem functions.

However VB5 might not accept some of the argument data type declarations in the the type library,
so these aliases would have to be either modified or dropped. Obviously I haven't tested this, so
you're on your own. Back

Note 2 Yo Bill, chill out man, I'm not tryin' to rip you of so plz back off…

Note 3 A bit of friendly advice: 32-bit operating systems normally prevent processes from
accessing each other's (or the kernel's) memory. If you feel like peeking and poking around in there
like them good 'ole GWBASIC times, I suggest you check out the IsBadReadPtr and IsBadWritePtr

functions in kernel32.dll first. These functions can tell you if it the OS permits reading from or
writing to a given memory address or range. Otherwise that kernel will hit right back at ya with a
nasty exception fault. Also keep in mind that none of the declarations tolerate being called with an
argument value that equals 0, Nothing or vbNullString, so make sure you call them with valid

arguments unless you like to take frequent coffee breaks. Back

Note 4 A type library is a binary file or component within another file that contains type
information about types and objects exposed by an ActiveX application in a form that is accessible
to other applications at runtime. Such a type may be an alias, enumeration, structure or union. An
object can be a module (defines a group of functions, typically a set of DLL entry points), interface,
IDispatch interface (dispinterface), or component object class (coclass). Using a type library, an
application or browser can determine which interfaces an object supports, and invoke an object's
interface methods. This can occur even if the object and client applications were written in different
programming languages. You can create your own type libraries using the MIDL (or older MkTypLib)
compiler.
Visual Basic creates type library information for the classes you create, provides type libraries for
the objects it includes, and lets you access the type libraries provided by other applications. If you
reference an external type library, VB uses it at design time to check the syntax of your code and at
compile time to build the executable. But at run-time the type library is no longer required since
the information has already been compiled into the binary. Therefore typelibs (usually) do not have
to be distributed with the executable. Back

Note 5 On the VB2TheMax website you can find an excellent IDL For VBTutorial by Philip Fucich.
And in the MSDN library you may find a series of articles on the internals of VB and writing type
libraries by Bruce McKinney, Extending Visual Basic with C++ DLLs, the first of which is
appropriately called Stealing Code with Type Libraries. Back

Note 6 Guess how I know this... Back

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

27 of 28 4/10/2016 2:39 PM



Copyright © 2002 Michel Rutten, m.rutten@bigfoot.com

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

VBVM6: A Visual Basic TypeLib for memory access http://www.xbeat.net/vbspeed/i_VBVM6Lib.html#FootNote6Back

28 of 28 4/10/2016 2:39 PM


