
fireeye.com

Writing a libemu/Unicorn Compatability Layer «
Threat Research Blog

by David Zimmer | Threat Research

In this post we are going to take a quick look at what it takes to write a libemu

compatibility layer for the Unicorn engine. In the course of this work, we will also import

the libemu Win32 environment to run under Unicorn.

For a bit of background, libemu is a lightweight x86 emulator written in C by Paul Baecher

and Markus Koetter. It was released in 2007 and includes a built-in Win32 environment

that allows shellcodes to resolve API at runtime. The library also provides end users with a

convenient way to receive callbacks when API functions are hit. The original project

supported 5 Windows dlls, 51 hooks and 234 opcodes all wrapped in a tight 1mb package.

Unfortunately it is no longer being updated.

In late 2015, we saw the Unicorn engine project released by Nguyen Anh Quynh and Dang

Hoang Vu. This project takes the processor emulators from QEMU and wraps them into an

easy to use library. Unicorn, however, does not provide a Win32 layer.

As an experiment, we were curious to see what it would take to bring the libemu Win32

environment into Unicorn. This task actually turned out to be quite simple since it was

nicely self contained. In the process of exploring this it also made sense to write a basic

shim layer to support the libemu API and translate its inner workings over to Unicorn.

Lets start with the common libemu API:

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

1 of 7 4/17/2017 5:56 PM



The API is actually very similar to Unicorn:

The major differences are that Unicorn does everything through an opaque uc_engine*

handle, while libemu uses a series of structs such as emu, emu_cpu, and emu_memory:

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

2 of 7 4/17/2017 5:56 PM



In general, the emu and emu_memory structures are passed directly as arguments to API

wrappers such as emu_cpu_get, emu_memory_get and the emu_memory_read/write

functions. There is one common case of direct member access to the emu_cpu structure

that requires some special attention. This structure gives the user direct read/write access

to the emulator’s virtual processor and is commonly utilized by user code. Examples to

support include:

The next task was to see if we could mimic the direct access to the emu_cpu elements as if

they were static struct fields. Here we enter the world of C++ operator overloading.

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

3 of 7 4/17/2017 5:56 PM



Writing a libemu/Unicorn Compatability Layer « Threat Research Blog about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

4 of 7 4/17/2017 5:56 PM



With these tasks complete, porting existing code from libemu over to Unicorn should be a

pretty straightforward task.

In Figure 1 we see an initial test, we put together that includes the Win32 environment,

shim layer, several API hooks and a hard coded payload.

Figure 1: Initial test of the libemu Win32 environment and hooks running under Unicorn

With this working, the next stage was to try it out against a larger code base. Here we

imported the userhooks.cpp from scdbg, an extension of the libemu sctest that includes

some 250 API hooks. As it turns out, very few changes were required to get it working.

In Figure 2, we can see the results of testing it against a fairly complex shellcode that:

allocates virtual memory

copies code to the new alloc

creates a new thread

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

5 of 7 4/17/2017 5:56 PM



downloads an executable

checks the registry for the presence of Antivirus software

Note that while this shellcode would normally do process injection, scdbg handles it all

inline for simplified analysis.

Figure 2: Complex shellcode running with hooks imported from scdbg

Another large feature to test was the scdbg debug shell. When testing software in an

emulated environment, having interactive debug tools available is extremely handy.

Figure 3 shows an example of setting a breakpoint, single stepping, and examining

memory of code running in the emulator.

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

6 of 7 4/17/2017 5:56 PM



Figure 3: Imported scdbg debug shell running with Unicorn Engine and libemu shim layer

Conclusion

In this article we took a quick look at the differences between the libemu and Unicorn

emulators API. This allowed us to create a shim layer to import legacy libemu code and use

it with Unicorn largely unchanged.

Once the shim layer was in place, we next imported the libemu Win32 Environment so we

could run it under Unicorn.

As a final test we ported several large portions of the scdbg project, which was originally

written to run under libemu. Here our previous work allowed for the importation of

scdbg's 250+ API hooks and debug shell to run under Unicorn with only minimal changes.

Overall the entire process went quite smoothly and should provide benefits for developers

of libemu and/or Unicorn. If you would like to experiment for yourself you can download a

copy of our test project here.

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

7 of 7 4/17/2017 5:56 PM


