
VB6 Variable Initialization and Tear Down

Site: http://sandsprite.com David Zimmer <dzzie@yahoo.com>

Introduction:

In this article we will be looking at how VB6 initializes and cleans up module level variables. This
query into the inner operations of the Runtime opens the door to some interesting new capabilities for
binary analysis.

This includes:
• enumerating all live VB6 classes
• discovery of private variables and types
• extracting data from live class instances
• gaining arbitrary script access to any live class

Background:

Every VB6 code module, regardless of type, can hold its own module level variables.

• If a class goes out of scope and is being destroyed, how does the VB Runtime assure that all of
its resources are automatically cleaned up?

• If a module contains an array of predefined size, how does the Runtime allocate the memory so
its ready for first time use?

For instanced code modules, such as Forms and Classes, module level variables are stored on a per
instance basis. The value returned by ObjPtr() actually returns a data block that holds a multitude of
settings such as reference count, VTable pointer, local variables etc.

For BAS modules, where there is no instancing, the variables are held at static offsets starting at
Object.aModulePublic.

If we want to explore how resource cleanup occurs, we can hold an instance of one of our classes in a
BAS level variable and place a MsgBox in the class terminate code. This gives us a convenient place to
attach a debugger and examine the call stack.

Consider the following code:

http://sandsprite.com/
mailto:dzzie@yahoo.com

Attaching a debugger at the class terminate MsgBox gives us the following call stack:

Address Stack Procedure / arguments
0019FA64 66028116 MSVBVM60.RUN_INSTMGR::ExecuteInitTerm
0019FA9C 66027F83 MSVBVM60.RcmResetModulesPrepass
0019FAB0 66027F04 MSVBVM60.RcmShutDownProject
0019FAC8 66027B3C MSVBVM60.RcmResetProject
0019FD44 66051B59 MSVBVM60.66027AC0
0019FD58 66027A39 MSVBVM60.EbResetProjectNormal
0019FD70 66027D28 MSVBVM60.CThreadPool::ResetProject
0019FD8C 66051AEC MSVBVM60.DbgReset
0019FDAC 6600B1B5 MSVBVM60.DbgResetIfDoneRunning

As we examine these routines we discover that VB6 keeps a linked list of all class instances. The run
time data we received in form load showed the following ObjPtrs for the 3 class instances:

objptr 1 = 0x565280
objptr 2 = 0x565C88
objptr 3 = 0x565CE8

As we step through the code in RcmResetModulesPrepass, we find it referencing the following VB6
structure:

Class1.ObjInfo.lpProjectData = 402018

As we analyze the code, we find that this offset is a pointer to a RUN_INSTMGR structure

00402018 005650C8 *RUN_INSTMGR

005650C8 00565CE8 <-- objptr 3
005650CC 00000000
005650D0 004011E8 Class1.objinfo
005650D4 00000003 <-- live instances count

Following the ObjPtr() to the next live instance, we see a linked list emerge at ObjPtr() +4 to the next
instance

00565CE8 00402348 Project1.00402348 class vtable
00565CEC 00565C88 <-- objptr 2

 00565C88 00402348 Project1.00402348 class vtable
 00565C8C 00565280 <-- objptr 1

 00565280 00402348 Project1.00402348 class vtable
 00565284 00000000 <-- no next instance

This is an interesting bit of trivia, but is it really useful? Well its more interesting than you might think!

Implications:

At this point, we can now scan a running a process and enumerate all of its live class instances. What
would make this really interesting is if we knew what local variables were held at the class level, their
offset, and type. This would allow us to remotely view every classes configuration state dumping live
data without even attaching a debugger. Is that possible?

Yuuuup.

If you have been following along with my VB internals series there is an article titled Recovery of
function prototypes in Visual Basic 6 executables. In this paper we detail how to parse the IDispatch
type information to get public variable names, types, and offsets. When you combine these two
techniques, you now get a pretty interesting information dumper that can be implemented using only
ReadProcessMemory.

https://decoded.avast.io/davidzimmer/recovery-of-function-prototypes-in-visual-basic-6-executables/
https://decoded.avast.io/davidzimmer/recovery-of-function-prototypes-in-visual-basic-6-executables/

This new form has already been added to Vbdec and is available from the Explore --> Live Class
Instances menu item.

Ok, neat trick. With a live class instance pointer what else can we do? Can we call methods on these
classes from the ObjPtr ?

Why yes we can. Here I will refer you to a previous paper titled Scripting Arbitrary VB6 Applications.
Building on our previous work we are now able to access any live class instance through its ObjPtr.

https://decoded.avast.io/davidzimmer/scripting-arbitrary-vb6-applications/

Once openscript is active by launching a process through Explore --> Script Remote
Application these new features can be accessed using the new “remote” object in the vbdec Script
Automation form.

Here again, our knowledge keeps compounding upon itself allowing us to do new and magical things.

Going back:

Ok, so the live class instances list is interesting (and a bit unexpected) but there are still questions about
that whole object tear down process. We know how the VB Runtime does its internal class cleanup.
How does it handle the cleanup of other resources such as external COM objects?

For this query, I added a VB Collection object to our test module, and set a breakpoint on its
VBACollection::Release method in the Vb Runtime. After some probing of the call stack I came
across the following function:

.text:66061E42 void RESDESCTBL::DestructItem(
 RESDESCTBL *a1,
 void *a2,
 struct RESDESC *a3,
 unsigned int *a4
)

This function is pretty interesting. It reveals that the VB Runtime knows about private variables offsets
and types to enable clean tear down. Where is this information held and what does it represent?

As we start analyzing this function, we find that the RESDESCTBL pointer corresponds to the
Object.aPublicBytes field. Let us consider the following code in a module:

Private a As String
Private b As Long
Private c As New Collection

Sub Main()
 a = "test"
 b = 3
 c.Add a
End Sub

4017B8 008 aPublicBytes 401914
4017C0 010 aModulePublic 402024 - data section

00402024 (+0) 004FF90C UNICODE "test"
00402028 (+4) 00000003
0040202C (+8) 004FF930 -> vtable for collection object

.text:00401914 dw 14h |--;total data size

.text:00401916 dd 10h | ;size in mem of data block

.text:0040191A dd 2 | ;entries

.text:0040191E dw 0 |__;unknown

.text:00401920 dw 0 ;data offset 1

.text:00401922 dw 1 ;type id = string

.text:00401924 dw 8 ;data offset 2

.text:00401926 dw 3 ;type id = object

Since this code is in a non-instanced BAS module, the compiler had to define a data area for variable
storage. This is where the Object.aModulePublic field comes into play. The Object.aPublicBytes
field then points to a RESDESCTBL structure that defines the variables for the code unit.

Looking at our sample data we have 3 private variables, but only two entries in our RESDESCTBL. This
is because of how this data is intended to be used. The Private b as long is not visible in this table
because it does not require any cleanup on termination.

This table can reveal basic type information and data offsets for private variables, but unfortunately it is
not as rich as the IDispatch information we extracted before. As we start to probe the format of this
type information we find that it aware of Variants, Strings, Arrays, Objects and UDT types (*if the
UDT contains a subtype requiring cleanup)

Here is a closer look at my current working definition for the header structure:

Private Type tResDescTbl
size As Integer
memDataSz As Integer 'end marker for class data block = ABABABAB
reqAlloc As Integer
entries As Long
unk1 As Integer

End Type

The type data that follows this header contains dynamic field types and can get rather complex.

We also find that this table gets used during code initialization through RESDESCTBL::ConstructItem.
This is how the Runtime can ensure that pre-dimensioned arrays are ready for first use. The following
data defines an array for pre-execution initialization

Dim x(&H11223344 To &H22334455) As Integer '11111112 elements

.text:0040165C dw 38h

.text:0040165E dw 20h

.text:00401660 dw 1 ; 660625AD cmp [esi+6], ax

.text:00401662 dw 1

.text:00401664 dw 0

.text:00401666 dw 0 ; RescDesctbl ends here

.text:00401668 dw 4 ; data offset - 660625B1 lea edi, [esi+0Ch]

.text:0040166A dw 5 ; ary flag 6605606D MOV AX,WORD PTR DS:[ESI+2]

.text:0040166C dw 0 ; array pre-def struct

.text:0040166E dw 0

.text:00401670 dw 0 ; 660560F2 TEST BYTE PTR DS:[ECX+8],60

.text:00401672 dw 0

.text:00401674 dw 0

.text:00401676 dw 0 end of struct 2 (size based on 401670 flag)

.text:00401678 dw 1 raw safe array struct - dims

.text:0040167A dw 92 features FADF_HAVEVARTYPE | FIXEDSIZE | STATIC

.text:0040167C dd 2 element size (would be 4 for long)

.text:00401680 dd 0 locks

.text:00401684 dd 0 pvdata

.text:00401688 dd 11111112h ; SafeArrayBound.cElements

.text:0040168C dd 11223344h ; SafeArrayBound.lbound

.text:00401690 dw 2 VT_I2 (if long value is 3 - VT_I4)

To gain quick visibility into these structures a new form has been added to vbdec under the
Explore --> Resource Descriptors menu item.

While not every type of entry is fully supported yet, results so far are pretty good. With this extra
information we are now able to start discovering private variables. This information can then be
bubbled back into the main UI as well in the Live Class Instances form.

Not as comprehensive as the other data, but still a welcome addition. The next step is to start scanning
the disasm to infer more types and data offsets. Knowing about the existence and basic type of private
variables could also be coupled with more invasive run time data collection.

I am currently experimenting with a technique to call rtcTypeName through openscript to query object
types dynamically. This many also be possible through ReadProcessMemory calls for internal objects.

Conclusion:

In this article we discovered how the VB6 Runtime tracks live class instances and certain types of
private variables for initialization and cleanup.

This allowed us to enumerate all live class instances in a running process and dump known data offsets
for external viewing.

Building on previous work, the revealed class ObjPtr() also allowed us to remotely script public
functions on any arbitrary class instance.

The ability to call private class functions is now also within our reach. This same technique will also
allow us to call arbitrary module functions remotely as well. The largest barrier at this point will be
determining prototypes for the private functions.

While the type information held within the RESDESCTBL is not as rich as the IDispatch information, it
is still a welcome addition and reveals new information to us. We may also be able to further refine the
data it gives us through probing the live process.

At this point we still have gaps and more to explore but are making good progress none the less.

Our path has proven quite sinuous, but also very interesting. It appears that I am hooked on the intrigue
and discovery.

https://gist.github.com/dzzie/b778ce622342cf1ddc4eead452d5d22c

