
fireeye.com

Remote Symbol Resolution

by David Zimmer

8-10 minutes

Introduction

The following blog discusses a couple of common techniques that

malware uses to obscure its access to the Windows API. In both

forms examined, analysts must calculate the API start address and

resolve the symbol from the runtime process in order to determine

functionality.

After introducing the techniques, we present an open source tool

we developed that can be used to resolve addresses from a

process running in a virtual machine by an IDA script. This gives us

an efficient way to quickly add readability back into the

disassembly. 

Techniques

When performing an analysis, it is very common to see malware try

to obscure the API it uses. As a malware analyst, determining which

API is used is one of the first things we must resolve in order to

determine the capabilities of the code.

Two common obfuscations we are going to look at in this blog are

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

1 of 10 4/28/2021, 8:18 AM



encoded function pointer tables and detours style hook stubs. In

both of these scenarios the entry point to the API is not directly

visible in the binary.

For an example of what we are talking about, consider the code in

Figure 1, which was taken from a memory dump of xdata crypto

ransomware sample C6A2FB56239614924E2AB3341B1FBBA5.

Figure 1: API obfuscation code from a crypto ransomware sample

In Figure 1, we see one numeric value being loaded into eax,

XORed against another, and then being called as a function

pointer. These numbers only make sense in the context of a

running process. We can calculate the final number from the

values contained in the memory dump, but we also need a way to

know which API address it resolved to in this particular running

process. We also have to take into account that DLLs can be

rebased due to conflicts in preferred base address, and systems

with ASLR enabled.

Figure 2 shows one other place we can look to see where the

values were initially set.

Figure 2: Crypto malware setting obfuscated function pointer from

API hash

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

2 of 10 4/28/2021, 8:18 AM



In this case, the initial value is loaded from an API hash lookup –

again not of immediate value. Here we have hit a crossroad, with

multiple paths we can take to resolve the problem. We can search

for a published hash list, extract the hasher and build our own

database, or figure out a way to dynamically resolve the decoded

API address.

Before we choose which path to take, let us consider another

sample. Figure 3 shows code from Andromeda sample,

3C8B018C238AF045F70B38FC27D0D640.

Figure 3: API redirection code from an Andromeda sample

This code was found in a memory injection. Here we can see what

looks to be a detours style trampoline, where the first instruction

was stolen from the actual Windows API and placed in a small stub

with an immediate jump taken back to the original API + x bytes.

In this situation, the malware accesses all of the API through these

stubs and we have no clear resolution as to which stub points

where. From the disassembly we can also see that the stolen

instructions are of variable length.

In order to resolve where these functions go, we would have to:

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

3 of 10 4/28/2021, 8:18 AM



enumerate all of the stubs

calculate how many bytes are in the first instruction

extract the jmp address

subtract the stolen byte count to find the API entrypoint

resolve the calculated address for this specific process instance

rename the stub to a meaningful value

In this sample, looking for cross references on where the value is

set does not yield any results.

Here we have two manifestations of essentially the same problem.

How do we best resolve calculated API addresses and add this

information back into our IDA database?

One of the first techniques used was to calculate all of the final

addresses, write them to a binary file, inject the data into the

process, and examine the table in the debugger (Figure 4). Since

the debugger already has a API address look up table, this gives a

crude yet quick method to get the information we need.

Figure 4: ApiLogger from iDefense MAP injecting a data file into a

process and examining results in debugger

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

4 of 10 4/28/2021, 8:18 AM



From here we can extract the resolved symbols and write a script to

integrate them into our IDB. This works, but it is bulky and involves

several steps.

Our Tool

What we really want is to build our own symbol lookup table for a

process and create a streamlined way to access it from our scripts.

The first question is: How can we build our own lookup table of API

addresses to API names? To resolve this information, we need to

follow some steps:

enumerate all of the DLLs loaded into a process

for each DLL, walk the export table and extract function name and

RVA

calculate API entrypoint based on DLL base address and export

RVA

build a lookup table based on all of this information

While this sounds like a lot of work, libraries are already available

that handle all of the heavy lifting. Figure 5 shows a screenshot of a

remote lookup tool we developed for such occasions.

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

5 of 10 4/28/2021, 8:18 AM



Figure 5: Open source remote lookup application

In order to maximize the benefits of this type of tool, the tool must

be efficient. What is the best way to interface with this data? There

are several factors to consider here, including how the data is

submitted, what input formats are accepted, and how well the tool

can be integrated with the flow of the analysis process.

The first consideration is how we interface with it. For maximum

flexibility, three methods were chosen. Lookups can be submitted:

individually via textbox

in bulk by file or

over the network by a remote client

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

6 of 10 4/28/2021, 8:18 AM



In terms of input formats, it accepts the following:

hex memory address

case insensitive API name

dll_name@ordinal

dll_name.export_name

The tool output is in the form of a CSV list that includes address,

name, ordinal, and DLL.

With the base tool capabilities in place, we still need an efficient

streamlined way to use it during our analysis. The individual

lookups are nice for offhand queries and testing, but not in bulk.

The bulk file lookup is nice on occasion, but it still requires data

export/import to integrate results with your IDA database.

What is really needed is a way to run a script in IDA, calculate the

API address, and then resolve that address inline while running an

IDA script. This allows us to rename functions and pointers on the

fly as the script runs all in one shot. This is where the network client

capability comes in.

Again, there are many approaches to this. Here we chose to

integrate a network client into a beta of IDA Jscript (Figure 6). IDA

Jscript is an open source IDA scripting tool with IDE that includes

syntax highlighting, IntelliSense, function prototype tooltips, and

debugger.

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

7 of 10 4/28/2021, 8:18 AM



Figure 6: Open source IDA Jscript decoding and resolving API

addresses

In this example we see a script that decodes the xdata pointer table,

resolves the API address over the network, and then generates an

IDC script to rename the pointers in IDA.

After running this script and applying the results, the decompiler

output becomes plainly readable (Figure 7).

Figure 7: Decompiler output from the xdata sample after symbol

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

8 of 10 4/28/2021, 8:18 AM



resolution

Going back to the Andromeda sample, the API information can be

restored with the brief idajs script shown in Figure 8.

Figure 8: small idajs script to remotely resolve and rename

Andromeda API hook stubs

For IDAPython users, a python remote lookup client is also

available.

Conclusion

It is common for malware to use techniques that mask the Windows

API being used. These techniques force malware analysts to have

to extract data from runtime data, calculate entry point addresses,

and then resolve their meaning within the context of a particular

running process.

In previous techniques, several manual stages were involved that

were bulky and time intensive.

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

9 of 10 4/28/2021, 8:18 AM



This blog introduces a small simple open source tool that can

integrate well into multiple IDA scripting languages. This

combination allows analysts streamlined access to the data

required to quickly bypass these types of obfuscations and

continue on with their analysis.

We are happy to be able to open source the remote lookup

application so that others may benefit and adapt it to their own

needs. Sample network clients have been provided for Python, C#,

D, and VB6.

Download a copy of the tool today.

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

10 of 10 4/28/2021, 8:18 AM


