Remote Symbol Resolution

10of 10

fireeye.com

Remote Symbol Resolution

by David Zimmer

8-10 minutes

Introduction

The following blog discusses a couple of common techniques that
malware uses to obscure its access to the Windows API. In both
forms examined, analysts must calculate the API start address and
resolve the symbol from the runtime process in order to determine
functionality.

After introducing the techniques, we present an open source tool

we developed that can be used to resolve addresses from a
process running in a virtual machine by an IDA script. This gives us
an efficient way to quickly add readability back into the
disassembly.

Techniques

When performing an analysis, it is very common to see malware try
to obscure the APl it uses. As a malware analyst, determining which
APl is used is one of the first things we must resolve in order to
determine the capabilities of the code.

Two common obfuscations we are going to look at in this blog are

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

4/28/2021, 8:18 AM

Remote Symbol Resolution

20f10

encoded function pointer tables and detours style hook stubs. In
both of these scenarios the entry point to the APl is not directly
visible in the binary.

For an example of what we are talking about, consider the code in
Figure 1, which was taken from a memory dump of xdata crypto
ransomware sample C6A2FB56239614924E2AB3341B1FBBAS.

.data:004110A4 dword 41106A4 dd 43C1FBF5h
.data:006412354h dword 412354 dd 3F6AABB5H

text:0040984F mov eax, dword 4110A4
-text:080409853 Xor eax, dword_u412354
.text:00409859 push esi
-text:0040985A push 0

-text:080640985C call eax

Figure 1: APl obfuscation code from a crypto ransomware sample

In Figure 1, we see one numeric value being loaded into eax,
XORed against another, and then being called as a function
pointer. These numbers only make sense in the context of a
running process. We can calculate the final number from the
values contained in the memory dump, but we also need a way to
know which APl address it resolved to in this particular running
process. We also have to take into account that DLLs can be
rebased due to conflicts in preferred base address, and systems
with ASLR enabled.

Figure 2 shows one other place we can look to see where the
values were initially set.

-text:0040AF1D push SC695A2Ch
.text:0048AF22 push offset [dword_412354
-text:0040AF27 mov edx, [ebp+uvar_C0]
-text:0048AF2D push edx

-text:0040AF2E call loadImportByHash

Figure 2: Crypto malware setting obfuscated function pointer from
APl hash

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

4/28/2021, 8:18 AM

Remote Symbol Resolution

30f10

In this case, the initial value is loaded from an APl hash lookup —
again not of immediate value. Here we have hit a crossroad, with
multiple paths we can take to resolve the problem. We can search
for a published hash list, extract the hasher and build our own
database, or figure out a way to dynamically resolve the decoded
APl address.

Before we choose which path to take, let us consider another
sample. Figure 3 shows code from Andromeda sample,
3C8B018C238AF045F70B38FC27D0D640.

seqfO0:00ATE110 sub_A7E110 proc near ; CODE
seq000:00A7E110 - - DAT
segfBB:BOA7E110 B8 9A 60 60 68 mov eax, Y -
seqBPO:BBAZE11S E9 CB F6 E8 7B jmp near ptr FESEDEESH
seqfan: 00ATET115 sub_A7E110 endp

seqbBa:B8A7ET1S

seq080:00A7E115

seqfBf:AOA7E11A 6O 00 60 60 66 00 align 16h

seqgB00:00A7E120

seqB00:BOATE120 SUBROUTTIHNE ========-
seqg000:00A7E120

seqB00:00A7E120 ; Attributes: noreturn

seqb00:00A7E120

seqb00:00ATE120 sub_A7E128 proc near » CODE
seq000:00A7E120 s DATA
seq000:80A7E120

seq000:00A7E120 arg_4 = dword ptr 8
seqBB0:0OA7E120

seqB00:00A7E120 8B 44 24 08 mov eax, [esprarg &
seqg000: BOA7E124 E9 9F 34 EB 7B jmp near ptr ﬁ
seqBfn:BOATE12Y sub_A7E128 endp

Figure 3: API redirection code from an Andromeda sample

This code was found in a memory injection. Here we can see what
looks to be a detours style trampoline, where the first instruction
was stolen from the actual Windows APl and placed in a small stub
with an immediate jump taken back to the original APl + x bytes.

In this situation, the malware accesses all of the API through these
stubs and we have no clear resolution as to which stub points
where. From the disassembly we can also see that the stolen
instructions are of variable length.

In order to resolve where these functions go, we would have to:

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

4/28/2021, 8:18 AM

Remote Symbol Resolution

4 0f 10

enumerate all of the stubs

calculate how many bytes are in the first instruction

extract the jmp address

subtract the stolen byte count to find the API entrypoint

resolve the calculated address for this specific process instance
rename the stub to a meaningful value

In this sample, looking for cross references on where the value is
set does not yield any results.

Here we have two manifestations of essentially the same problem.
How do we best resolve calculated APl addresses and add this
information back into our IDA database?

One of the first techniques used was to calculate all of the final
addresses, write them to a binary file, inject the data into the
process, and examine the table in the debugger (Figure 4). Since
the debugger already has a APl address look up table, this gives a
crude yet quick method to get the information we need.

=0 xi| I

= DOCFDO 11 1 o
1| TC9A0CES | ntdl L. Zwhapll iewlf Sect Lon Z =
1| 70981408 ntdl l. 7CIA14D0 +J ApiLogger
- ;gg%iéﬂ ntgll.Eu?:ers;InFornationProcess £ i 405D -
o nt a_allmu able id;
| PC99E360) nedl L. FulinmapUiewdfSect ion Fess P |
|| 7C9S4EDA| ntdl . Rt IRandom Algs

TC9BELZC| nedl L. ZwBuerySect ion [

?Egnﬁ? ntg} .au?glayExegutégn
J nt =Rt IComputeCro3a 1

S sl Tia e o Intect Dats JC-\Documents and Settings\lab\Desktop\addr bin

7C268121 ntdl L.t llalkHeap

7C218549 ntdll.Re | InagettHeader Freeze At [

7C 7A ntﬂ{ LMEmEet
W Ei Bdint « MEmCoY

7C9E72EC nedil. isdigit Ignare (Slaw) |

g §?D ga’ mlllSﬂﬁviartuD
«Ntol
3B IS . freeaddr info Processes Log I
WE2_32.closesocket -
| IS2_32, getsockname Opening PID: 4060 Process Handle=484

E

5091 ueo- 52! Sooker Remote Allocation base: CFOODD
e peemnnlnta WriteProcessMemory=1 BufLen=641 Bytes Written: 641
615A| ISZ_ 32, recy

2C83| WSE-
4
4
it

Skipping CreateRemoteThread (injecting as Data only)

sEndto
4573 WS2_32.WSREventSelect

F7WS2_32.WSACreateEuvent
3 19 WS2_32. ioct lsocket
1 BBBE29| kerne |32. GetModu leHand leR
3| 7Ce09950 kernel32.LocalFree
7C918331 ntdll.Rt IGetLasthin32Error
0| FCSBACED| kerne 132, Getlers ionExll
4| PCEA9B77 | kernel32.CloseHandle
7CBBEGAD| kerne |32, GetCurrentProcess
C| 7CEASCAD| kernel32.Mult iByteTollideChar

Collog Stoploogng | Pase | Fnd | see | cea

1) TCEBACEE kerne 132, GetProcAddress
+ | kerne 32, LoadlL ibraryf

| 76
TCSACCAY! k 132.ExitTh d i
SPRAFFF| kerne | 25, Al nhalFrae [pid | msg

Figure 4: ApiLogger from iDefense MAP injecting a data file into a
process and examining results in debugger

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

4/28/2021, 8:18 AM

Remote Symbol Resolution

50f10

From here we can extract the resolved symbols and write a script to
integrate them into our IDB. This works, but it is bulky and involves
several steps.

Our Tool

What we really want is to build our own symbol lookup table for a
process and create a streamlined way to access it from our scripts.

The first question is: How can we build our own lookup table of API
addresses to APl names? To resolve this information, we need to
follow some steps:

enumerate all of the DLLs loaded into a process

for each DLL, walk the export table and extract function name and
RVA

calculate API entrypoint based on DLL base address and export
RVA

build a lookup table based on all of this information

While this sounds like a lot of work, libraries are already available
that handle all of the heavy lifting. Figure 5 shows a screenshot of a
remote lookup tool we developed for such occasions.

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

4/28/2021, 8:18 AM

Remote Symbol Resolution

6 0of 10

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

_io/x
Select PID | pidk 32600 0.093 seconds
Dlls |
|
baze Exports | Path -
400000 36 C:\Program Filez\Mozilla Firefox\frefos exe _—
7C00000 1316 C:AWINDOWShepstem32ntdll.dll
7CB00000 954 C:\WINDOWS system32hkernel32 . dll
10000000 141 C:%Program Filez\Mozilla Firefox\mozglue. dll
J70D0000 B77 C:AWINDOWShepstem328aDVAPI32.dl
J7E70000 514 C:\WINDOWShsystem32\RPCRT4.dll
J7FEODOO 77 C:\WINDOWShspstem325\S ecur32 dll
53460000 98 C:\WINDOWShspstem32hdbghelp.dil
F7C10000 830 C:NWINDOWShsystem32\mevert. dll
F7C00000 14 C:AWINDOWShapstem32WERSION. dll =
200N0N 1R1FE T4 Demmr men Cilmad kA =il = Ciembmd RACH IO A0 Al
*lci 1 b I
Api name or hex address Igetprucaddress Lnokup Bulk |

Result l?"EB[l-‘l'-.E 40 , GetProcAddress , 409, kemel32.dll

[~ Allow Remote Quernes (port 3000)

Figure 5: Open source remote lookup application

In order to maximize the benefits of this type of tool, the tool must

be efficient. What is the best way to interface with this data? There

are several factors to consider here, including how the data is

submitted, what input formats are accepted, and how well the tool

can be integrated with the flow of the analysis process.

The first consideration is how we interface with it. For maximum

flexibility, three methods were chosen. Lookups can be submitted:

e individually via textbox

e in bulk by file or

e over the network by a remote client

4/28/2021, 8:18 AM

Remote Symbol Resolution

7 of 10

In terms of input formats, it accepts the following:
hex memory address

case insensitive APl name

dll_name@ordinal

dll_name.export_name

The tool output is in the form of a CSV list that includes address,
name, ordinal, and DLL.

With the base tool capabilities in place, we still need an efficient
streamlined way to use it during our analysis. The individual
lookups are nice for offhand queries and testing, but not in bulk.
The bulk file lookup is nice on occasion, but it still requires data
export/import to integrate results with your IDA database.

What is really needed is a way to run a script in IDA, calculate the
APl address, and then resolve that address inline while running an
IDA script. This allows us to rename functions and pointers on the
fly as the script runs all in one shot. This is where the network client
capability comes in.

Again, there are many approaches to this. Here we chose to
integrate a network client into a beta of IDA Jscript (Figure 6). IDA
Jscript is an open source IDA scripting tool with IDE that includes
syntax highlighting, IntelliSense, function prototype tooltips, and
debugger.

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

4/28/2021, 8:18 AM

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

I IDA JScript - hittp://sandsprite.com - iﬂ|£|
Toals
t oy 0w Wy Stalside Binstances of 'api ' found
25 remote.ip = "I192.168.0.67" :J

app. timeout = 0
dat = Array();
ide = Array();

if(!remote. 8canProcess("mssec_sample.exe")) throw("Could not scan process! " +
remote.response);
foxr (i = startAt; i<=endAt; i+=4) |
®x = readlng(i);
real address = hi{base”"x)
api = remote.ResolveExport(real address) ? remote.response.split(’,')[1] : "zz2"
//O0xaddress, ResolveExport ress, 'loockup result”
dat.push([hiresponss ess,api].join("', ")
ide.push("M} gcanProcess - - e =

idnb|
- Log Window and Output Pane

Built in classes: ida, fso. app. remote. [hitting the dot will display intellisense and open paran -
codetip intellisense]

global functions:

alerc (x),

hix) [int to hex],

tix) [append this textbox with x]
dix) [add x to debug pane list]

.

™ Show Debug Log Current IDE (null) Saved Scr&ptsl j

Figure 6: Open source IDA Jscript decoding and resolving API
addresses

In this example we see a script that decodes the xdata pointer table,
resolves the APl address over the network, and then generates an
IDC script to rename the pointers in IDA.

After running this script and applying the results, the decompiler
output becomes plainly readable (Figure 7).

-~

if { ({(=CryptAcquireContextV
{
vid = 8;

if (((*CryptCreateHash ~ XORBase))(v?, ox8lee3, 6, 8, &uin) == 1)
{

XORBase))(&vo, 6, 0, 1, BxFO000040))

if (((=CryptHashData = XORBase))(u10, vé, pbData, @) ==
&& ((=CryptGetHashParam ~ XORBase))(v16, 2, guid_binary, &u8, 8) == 1
&k v8 == 16)
{
yL = 1;
} -~
{ (*CryptDestroyHash
H
((*CryptReleaseContext = XORBase)){(v9, 8);

XORBase))(vi8);

b
return vs;

Figure 7: Decompiler output from the xdata sample after symbol

8of10 4/28/2021, 8:18 AM

Remote Symbol Resolution

90f10

resolution

Going back to the Andromeda sample, the APl information can be
restored with the brief idajs script shown in Figure 8.

remote.ip = "192,168.116.128"
if (!'remote.3canProcess ("3c8.exe™))
throw("failed to scan VM process is tool running? ip right?"):

cnt = ida.funcCount():
for(i=0; i < cnt: i++){
api='Lookup failed':;
ea = ida.functionStart(i):
if(ea >= OXAVEOFD £& ea <= OxAVEAEOD) {
firstSz = ida.instSize(ea):
nextEa = ida.nextEA(ea);
jmp = ida.getlism(nextEa):
Jwp = jmp.substr (jmp.indexOf('prcr')+3) .splic('h') . jJoin('').crim();
jmp = parselnt('Ox'+jmp) - firstSz;

if (remote.ResolveExport (h{jmp))){//ex: 7CS018D0 , allmul , 1191 , ntdll.dll
api = remote.response.splic(',')[1].tcim():
ida.setname (ea,api)

t{ [hiea), h{jmp),api] .join(',"'))

Figure 8: small idajs script to remotely resolve and rename
Andromeda API hook stubs

For IDAPython users, a python remote lookup client is also
available.

Conclusion

It is common for malware to use techniques that mask the Windows
APl being used. These techniques force malware analysts to have
to extract data from runtime data, calculate entry point addresses,
and then resolve their meaning within the context of a particular
running process.

In previous techniques, several manual stages were involved that
were bulky and time intensive.

about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

4/28/2021, 8:18 AM

Remote Symbol Resolution about:reader?url=https://www.fireeye.com/blog/threat-research/2017/06/...

This blog introduces a small simple open source tool that can
integrate well into multiple IDA scripting languages. This
combination allows analysts streamlined access to the data
required to quickly bypass these types of obfuscations and
continue on with their analysis.

We are happy to be able to open source the remote lookup
application so that others may benefit and adapt it to their own
needs. Sample network clients have been provided for Python, C#,
D, and VBG.

Download a copy of the tool today.

10 of 10 4/28/2021, 8:18 AM

