
Parsing VB6 Form Controls
Author: David Zimmer <dzzie@yahoo.com>
Site: http://sandsprite.com

This article is not going to be overly formal, but will be jam packed with in depth info. My
understanding of this topic is still in flux and it is very complicated. I am mostly documenting this for
my own solidification, but it will also be handy to any poor soul who wades into these dark waters.

Our voyage starts with the main VBHeader structure: its GuiTable field at offset 0x4c, and FormCount
member at offset 0x44.

After loading the vbHeader we load the GUI Tables. There is one for each component which has a
visual display surface such as a Form, User Controls, etc.

 If FormCount > 0 Then
 fPointer = aGuiTable
 Seek fhandle, VaToFileOffset(aGuiTable) + 1
 For i = 0 To FormCount - 1
 Set gui = New CGuiTable
 gui.LoadSelf fhandle, i, fPointer
 fPointer = fPointer + gui.lStructSize
 GuiObjects.Add gui
 Next
 End If

The structure for the GUI table still has a bunch of unknown fields. It is currently defined as follows:

Private Type tGuiTable ‘more: http://sandsprite.com/vb-reversing/vb-decompiler/viewtopic9937.html
 lStructSize As Long ' 0x00 always 0x50?
 uuidObjectGUI(15) As Byte ' 0x04 UUID of Object GUI
 Unknown1 As Long ' 0x14
 Unknown2 As Long ' 0x18
 Unknown3 As Long ' 0x1C
 Unknown4 As Long ' 0x20
 lObjectID As Long ' 0x24 Current Object ID in the Project
 Unknown5 As Long ' 0x28
 fOLEMisc As Long ' 0x2C OLEMisc Flags
 uuidObject(15) As Byte ' 0x30 UUID of Object
 dataSize As Long ' 0x40
 Unknown7 As Long ' 0x44
 aFormPointer As Long ' 0x48 Pointer to GUI Object Info
 Unknown8 As Long ' 0x4C

End Type

The aFormPointer and dataSize are the two key elements. The aFormPointer will lead us to another
data blob of dataSize bytes. We start parsing this blob at offset 0x5E (see http://sandsprite.com/vb-
reversing/vb-decompiler/viewtopic121f.html for header).

Processing each of these tables looks about like so:

mailto:dzzie@yahoo.com
http://sandsprite.com/vb-reversing/vb-decompiler/viewtopic121f.html
http://sandsprite.com/vb-reversing/vb-decompiler/viewtopic121f.html
http://sandsprite.com/

Dim cControlHeader As ControlHeader
Dim cArrayHeader As ControlArrayHeader
Dim gui As CGuiTable, b as Byte

 For Each gui In vbp.VBHeader.GuiObjects 'top level structs

 'start new gui object (form etc)
 Seek f, VaToFileOffset(gui.aFormPointer) + &H5E

 Do 'extract each control’s config blob

 fPos = loc(f)
 Get f, fPos + 4, b

 If b = &H80 Then
 Get #f, fPos + 1, cArrayHeader
 cControlHeader = ArrayToControlHeader(cArrayHeader, arrayIndex)
 Else
 Get #f, fPos + 1, cControlHeader
 End If

 'save control object

 Loop Until Not FindControlEndPos(f, fPos, cControlHeader, cp)

 gui.lastOffsetProcessed = loc(f)
 Next

The ControlHeader, and ControlArrayHeader structures look like the following:

Public Type ControlHeader
 length As Long
 cId As Byte
 cname As String
 null As Byte
 cType As Byte
End Type

Private Type ControlArrayHeader ‘this changed see update at end...
 length As Integer
 un1 As Byte
 arrayflag As Byte ‘must be 0x80
 cId As Byte
 aryIndex As Integer
 cname As String 'ex: 00 05 Text1
 null As Byte ‘string null terminator
 cType As Byte
End Type

Some example data may look like the following:

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
00000000 29 00 00 80 01 F4 01 05 00 54 65 78 74 31 00 02)..€.ô...Text1..
00000010 01 F4 01 04 78 00 78 00 BF 04 EF 01 0B 05 00 54 .ô..x.x.¿.ï....T

00000020 65 78 74 31 00 12 00 00 FF ext1....ÿ

Public Type ControlArrayHeader
 length As Integer ‘ 00 29
 un1 As Byte ‘ 00
 arrayflag As Byte ‘ 80
 cId As Byte ‘ 01
 aryIndex As Integer ‘ 1f4 (500)
 cname As String ‘ 0005 Text1
 null As Byte ‘ 00 – string null terminator
 cType As Byte ‘ 02 – vbTextBox (def a byte type)
End Type

The cType byte is defined as follows:

'see 0x66110A30 at runtime for “gaps”
Public Enum ControlTypes
 vbPictureBox = 0
 vbLabel = 1
 vbTextBox = 2
 vbFrame = 3
 vbCommandButton = 4
 vbCheckBox = 5
 vbOptionButton = 6
 vbComboBox = 7
 vbListBox = 8
 vbHScroll = 9
 vbVScroll = 10
 vbTimer = 11
 vbForm = 13
 vbDriveListBox = 16
 vbDirectoryListBox = 17
 vbFileListBox = 18
 vbMenu = 19
 vbMDIForm = 20
 vbShape = 22
 vbLine = 23
 vbImage = 24
 vbData = 37
 vbOLE = 38
 vbUserControl = 40
 vbPropertyPage = 41
 vbUserDocument = 42
 vbExternal = &HFF
End Enum

In the Semi-VBDecompiler source, the top level function is frmMain.ProcessControls:

https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/
frmMain.frm#L3789

The function ends at line 4536 and is 747 lines of code. Sub functions within it will also alter the file
pointer along the way.

I have rewritten this function several times trying to understand everything that is going on.

https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/frmMain.frm#L3789
https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/frmMain.frm#L3789

Each gui.aFormPointer blob contains a series of structures representing all of the controls placed
onto the control surface. The control header.length field will take you to the end of that individual
structure, however there are a dynamic number of control codes embedded after each structure.

In the Semi-VBDecompiler source this is checked here:

https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/
frmMain.frm#L4405

Below that you will see it gobble up a series of control codes based on what it finds (line 4424). If it
goes to far, then it will rewind the file pointer by one (4438) and start a new control.

The control codes are defined as follows:

Enum FormPropCtrlCodes
 fpcc_BeginNewChild = 1 ' New child control, in existing parent
 fpcc_EndCurrentControlParent = 2 ' End parent control and its children
 fpcc_ContinueCurrentControlParent = 3 ' Another child control follows
 fpcc_FinalEndConfigBlock = 4
 fpcc_StartOfMenus = 5
End Enum

You can find a discussion on these in the vbdecompiler.theautomators.com message board:

http://sandsprite.com/vb-reversing/vb-decompiler/viewtopic1df7.html

My understanding of the rules for reading these dynamically sized control codes is still in progress.
Valid sequences differ for the normal form controls and the menus. If the logic is off, it will start
gobbling up bytes that are actually part of the next control header and the extraction will be broken
from there on. This can easily happen if the control header length contains bytes which would be valid
FormPropCtrlCodes codes.

This situation could be handled heuristically with something like:

 For Each gui In vbp.VBHeader.GuiObjects

 startPos = VaToFileOffset(gui.aFormPointer)

 Do 'extract each control config blob

tryAgain:
 fPos = loc(f)
 ‘load control header here

 If isBadLength(cControlHeader.length, startPos, fPos, gui.dataSize) Then
 lateRewinds = lateRewinds + 1 ‘track error recoveries
 Seek f, fPos ‘move file pointer back 1
 GoTo tryAgain
 End If

This does work, but feels sloppy.

http://sandsprite.com/vb-reversing/vb-decompiler/viewtopic1df7.html
https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/frmMain.frm#L4405
https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/frmMain.frm#L4405

Current versions of vbdec have taken to tracking everything in an attempt to shed light on all of the
variations possible. Below is the new Form Object Properties form:

All of this information is also available to the script automation interface. Scripts can be run on the
command line to bulk process samples. The following except from ./scripts/gui_scan.js will export all
of this data to a database for bulk analysis.

Example vbdec cmdline: vbdec.exe "sample_path" /js gui_scan.js /term /min /nodisasm

 for(i=1; i <= vbp.vBHeader.GuiObjects.count(); i++){

 gui = vbp.vBHeader.GuiObjects(i)
 cc = gui.cco.ControlProps.count
 bnp = gui.bytesNotProcessed

 sql = "Insert into tblGUI (pid,name,ctlcount,bytesNotProcessed,hash)" +
 "Values('"+pid+"','"+gui.name+"','"+cc+"','"+bnp+"','"+hash+"')"

 cn.execute(sql)

 for(j=1; j <= gui.cco.ControlProps.count; j++){

cp = gui.cco.ControlProps.baseCollection(j)

sql = "Insert into tblCtls (pid,name,ctlCodes,ctlCodesDesc,hash,” +
 “rewinds,length,bytesNotProcessed,controlType) " +

 "Values('"+pid+"','"+cp.owner+"','"+cp.GetControlCodes() +
 "','"+cp.GetControlCodes(1)+"','"+hash+"','"+cp.rewindCount +
 "','"+cp.length+"','"+bnp+"','"+cp.controlType+"')"

 cn.execute(sql)
 }

 }

After building such a database you can quickly list all valid and invalid control code sequences with sql
queries such as:

SELECT DISTINCT ctlCodes FROM tblCtls where bytesNotProcessed = 0
SELECT DISTINCT ctlCodes FROM tblCtls where bytesnotprocessed <> 0

To build a corpus of vb6 samples you can download the old Planet Source Code archive and batch
compile them from the command line:

https://gist.github.com/dzzie/3a03cbd6025a2a76eda50246be111896
https://github.com/Planet-Source-Code/PSCIndex/blob/master/ByWorld/visual-basic.md

I am currently in the process of trying to fish out invalid control code sequences and stress testing the
control extraction routines. Disassembling vbdec itself was leading to errors on one of its forms due to
the cause mentioned above. Overall its a grueling process but unfortunately is a required task.

After accurately extracting all of the individual control property blobs, we have not yet even begun to
start extracting the individual control properties such as height and width. In Semi-VBDecompiler you
can find these routines individualized for each control type. This is what makes up the first 2000 lines
of modControls.bas

https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/
modControls.bas#L1987

I have completely ditched the form rebuilding and property extraction routines in vbdec now. Form
reconstruction is not a priority for me and it was a boat load of code. I am however still going to work
on understanding these property blobs as time permits (eg. 0x66065EFD PropLoadProp). In current
versions of vbdec a new OLB Viewer form has been added.

https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/modControls.bas#L1987
https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/modControls.bas#L1987
https://github.com/Planet-Source-Code/PSCIndex/blob/master/ByWorld/visual-basic.md
https://gist.github.com/dzzie/3a03cbd6025a2a76eda50246be111896

The opcode embedded within the config blob is the memberID – 0x10000. This is displayed in the
OlbViewer to help manually read the hex blobs. I will need to see if I can create a fully dynamic way to
process the blobs. As always there is much more work to do.

I must eventually extract properties such as .tag, .text, and .caption in the future. Unfortunately the
opcode changes with every control and you must fully process a control and its variable size fields to
get to the one property you do want :(

For now I codgered together an image extractor routine and added an “Extract Strings” menu item to
the form properties viewer. That plus the OlbViewer should get you through in a pinch.

If you want to see how the runtime itself processes these fields, grab a reference copy of the vb runtime
with symbols: http://sandsprite.com/vb-reversing/files/msvbvm60.zip

Place those files in the same folder as your target exe and start in OllyDbg. You can use offsets that
vbdec shows you to place hardware breakpoints on access to data of interest. For example setting a
breakpoint on the 0x80 byte of a textbox array’s header we hit a break on access at 0x66065E71 with
the following call stack:

In this manner we can start to trace out where the control codes are used.

In practice dumping large amounts of control codes from actual binaries and looking for patterns which
break the parser is easier though, so that’s where I am starting ! Its not a fun task, and completely
unpaid, so I will take an easy win if I can find it (plus there is like 10 people in the world who are
actually reading this)

Anyway...this is the end of my late night brain dump for now, more to come... enjoy.

Update:
So it took about 4 days to implement all the control code tracking stuff (framework, UI display, and
bulk processing script).

Then I ran an automated scan on a bunch of PSC submissions to find problems. After another 2 days
of data analysis 4-5 tricky bugs were uncovered in the control processing code. I believe everything
should be solid now (fingers crossed).

I am not really sure how much time I have into rewriting the full 750 lines of the ProcessControls
routine. It has to be over a month and a half of full time labor though. Changes used to require careful
testing. The new Object Properties form now includes enough stats to make it almost trivial.

If you find a sample which still displays Unprocessed <> 0 feel free to submit it to me as a bug. I did
implement the late rewind capability but that should consistently show as 0 now too.

http://sandsprite.com/vb-reversing/files/msvbvm60.zip

Lessons learned:

- tracking control codes, bytes left, total control count, rewinds, and late rewinds really helped
- Export to database and bulk analysis also really helped.
- the command line script support for bulk runs keeps proving its worth
- debug messages littered within the code were to dense to visualize even with a filter
- making data visible and easily digestible is the name of the game
- the late rewind heuristic was actually very effective but hopefully not necessary any more.

- 03 01 was never a valid control code
- 03 03 is valid for a menu but not other controls
- 03 04 can be valid, but only if bytesLeft = 0
- the 0x80 byte to check for an array header has a short story:

Public Type ControlHeader
 length As Long
 cId As Byte

Private Type ControlArrayHeader
 length As Integer
 un1 As Byte
 arrayflag As Byte ‘must be 0x80
 cId As Byte

This structure always bothered me a little bit. Why is length so much shorter for array elements. First
error I saw I had to treat the integer as unsigned for it to be right. Then I noticed that un1 was actually
part of the length. A 3 byte length with the 4th byte reserved as a flag? C doesnt have a 3 byte type.

Then it finally dawned on me that they reserve the 0x80000000 bit for the isArray flag and keep the
other 31 bits for the length. Since the 32nd bit is the sign bit which would turn the value negative,
technically it would be unused, and would be free as a flag.

Seems simple once you hear it but when you are only looking at data variations and an evolution of
bugs it can take longer to have that moment of realization. Final code now looks like:

Private Type ControlArrayHeader
 length As Long

Get f, fPos + 4, b ‘still just grab high byte to check flag
If (b And &H80) = &H80 Then 'sign bit is set its an array
 Get #f, fPos + 1, cArrayHeader
 cControlHeader = ArrayToControlHeader(cArrayHeader)

Private Function ArrayToControlHeader(a As ControlArrayHeader) As ControlHeader
 Dim h As ControlHeader
 h.length = (a.length And &H7FFFFFFF) 'remove the sign bit we want the other 31

90’s developers were probably more prone to these tricks from asm days. Another fun example here:

http://sandsprite.com/blogs/index.php?uid=7&pid=514&year=2022

http://sandsprite.com/blogs/index.php?uid=7&pid=514&year=2022

